剑指offer数组中的逆序对数

今天的第二道题目,因为自己第一次做类似的题目,能力有限,参考了题解中优秀的解法,上题:

题目描述
在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对。输入一个数组,求出这个数组中的逆序对的总数P。并将P对1000000007取模的结果输出。 即输出P%1000000007
输入描述:
题目保证输入的数组中没有的相同的数字
数据范围:
	对于%50的数据,size<=10^4
	对于%75的数据,size<=10^5
	对于%100的数据,size<=2*10^5
示例1 
输入
1,2,3,4,5,6,7,0
输出
7

分析:这道题需要求解逆序对数,其实很好理解,就是在排序过程中进行进行交换的次数,因为之前面的数字大,才会用到交换,也就是逆序对。
排序有很多方法:冒泡、归并等等,我先想到的就是冒泡,没想到归并思想。

方法一:冒泡法
代码:
public class Solution {
    public int InversePairs(int [] array) {
        int count=0;
        for(int i=0;i<array.length-1;i++){
            for(int j=i+1;j<array.length;j++){
                if(array[i]>array[j]){
                    count++;
                }
            }
        }
        return count%1000000007;
    }
}
代码是不是很简单,但是只运行通过了50%,其实就是上面数据中的第一种类型,所以冒泡排序求逆序对数是不可行的,那我们就用用归并。

方法二:归并
归并是先分再治,即先将数据进行形如二叉树的分解,在进行合并,在合并的过程中需要两两比较,这里即可以产生逆序对。

public class Solution {
    private int cnt;
    private void MergeSort(int[] array, int start, int end){
        if(start>=end)return;
        int mid = (start+end)/2;
        MergeSort(array, start, mid);
        MergeSort(array, mid+1, end);
        MergeOne(array, start, mid, end);
    }
    private void MergeOne(int[] array, int start, int mid, int end){
        int[] temp = new int[end-start+1];
        int k=0,i=start,j=mid+1;
        while(i<=mid && j<= end){
//如果前面的元素小于后面的不能构成逆序对
            if(array[i] <= array[j])
                temp[k++] = array[i++];
            else{
//如果前面的元素大于后面的,那么在前面元素之后的元素都能和后面的元素构成逆序对
                temp[k++] = array[j++];
                cnt = (cnt + (mid-i+1))%1000000007;
            }
        }
        while(i<= mid)
            temp[k++] = array[i++];
        while(j<=end)
            temp[k++] = array[j++];
        for(int l=0; l<k; l++){
            array[start+l] = temp[l];
        }
    }
    public int InversePairs(int [] array) {
        MergeSort(array, 0, array.length-1);
        return cnt;
    }
}
牛客运行通过
运行时间:455ms
运行内存:51220Kb
这主要是考察归并排序的思想,如果不是很清楚的网上搜索一下归并排序的思想。
欢迎各位互相交流~~

 

内容概要:本文档详细介绍了在三台CentOS 7服务器(IP地址分别为192.168.0.157、192.168.0.158和192.168.0.159)上安装和配置Hadoop、Flink及其他大数据组件(如Hive、MySQL、Sqoop、Kafka、Zookeeper、HBase、Spark、Scala)的具体步骤。首先,文档说明了环境准备,包括配置主机名映射、SSH免密登录、JDK安装等。接着,详细描述了Hadoop集群的安装配置,包括SSH免密登录、JDK配置、Hadoop环境变量设置、HDFS和YARN配置文件修改、集群启动与测试。随后,依次介绍了MySQL、Hive、Sqoop、Kafka、Zookeeper、HBase、Spark、Scala和Flink的安装配置过程,包括解压、环境变量配置、配置文件修改、服务启动等关键步骤。最后,文档提供了每个组件的基本测试方法,确保安装成功。 适合人群:具备一定Linux基础和大数据组件基础知识的运维人员、大数据开发工程师以及系统管理员。 使用场景及目标:①为大数据平台建提供详细的安装指南,确保各组件能够顺利安装和配置;②帮助技术人员快速掌握Hadoop、Flink等大数据组件的安装与配置,提升工作效率;③适用于企业级大数据平台的建与维护,确保集群稳定运行。 其他说明:本文档不仅提供了详细的安装步骤,还涵盖了常见的配置项解释和故障排查建议。建议读者在安装过程中仔细阅读每一步骤,并根据实际情况调整配置参数。此外,文档中的命令和配置文件路径均为示例,实际操作时需根据具体环境进行适当修改。
在无线通信领域,天线阵列设计对于信号传播方向和覆盖范围的优化至关重要。本题要求设计一个广播电台的天线布局,形成特定的水平面波瓣图,即在东北方向实现最大辐射强度,在正东到正北的90°范围内辐射衰减最小且无零点;而在其余270°范围内允许出现零点,且正西和西南方向必须为零。为此,设计了一个由4个铅垂铁塔组成的阵列,各铁塔上的电流幅度相等,相位关系可自由调整,几何布置和间距不受限制。设计过程如下: 第一步:构建初级波瓣图 选取南北方向上的两个点源,间距为0.2λ(λ为电磁波波长),形成一个端射阵。通过调整相位差,使正南方向的辐射为零,计算得到初始相位差δ=252°。为了满足西南方向零辐射的要求,整体相位再偏移45°,得到初级波瓣图的表达式为E1=cos(36°cos(φ+45°)+126°)。 第二步:构建次级波瓣图 再选取一个点源位于正北方向,另一个点源位于西南方向,间距为0.4λ。调整相位差使西南方向的辐射为零,计算得到相位差δ=280°。同样整体偏移45°,得到次级波瓣图的表达式为E2=cos(72°cos(φ+45°)+140°)。 最终组合: 将初级波瓣图E1和次级波瓣图E2相乘,得到总阵的波瓣图E=E1×E2=cos(36°cos(φ+45°)+126°)×cos(72°cos(φ+45°)+140°)。通过编程实现计算并绘制波瓣图,可以看到三个阶段的波瓣图分别对应初级波瓣、次级波瓣和总波瓣,最终得到满足广播电台需求的总波瓣图。实验代码使用MATLAB编写,利用polar函数在极坐标下绘制波瓣图,并通过subplot分块显示不同阶段的波瓣图。这种设计方法体现了天线阵列设计的基本原理,即通过调整天线间的相对位置和相位关系,控制电磁波的辐射方向和强度,以满足特定的覆盖需求。这种设计在雷达、卫星通信和移动通信基站等无线通信系统中得到了广泛应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值