补:交叉验证+参数调优(网格搜索)
import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split,GridSearchCV
from sklearn.svm import SVC
data,target=datasets.load_iris(return_X_y=True)
print(data.shape)
data_train,data_test,target_train,target_test=train_test_split(data,target,test_size=0.2)
print(data_train.shape)
dic_p={
'C':[1,10,100,10000],
'gamma':[0.01,0.1,1],
}
classifier=GridSearchCV(SVC(kernel='rbf'),dic_p)
classifier.fit(data_train,target_train)
pre=classifier.predict(data_test)
print((pre==target_test).sum())
(150, 4)
(120, 4)
30
1.opencv的核心技术
2.opencv的c++开发
3.opencv的python开发
3.1 特征点检测的使用
import cv2
import matplotlib.pyplot as plt
img_src=cv2.imread('timg.jpg')
img_src=cv2.cvtColor(img_src,cv2.COLOR_BGR2RGB)
orb=cv2.ORB_create(10000)
keypoints=orb.detect(img_src)
img_out=cv2.drawKeypoints(img_src,keypoints,None,(255,0,0))
plt.imshow(img_out)

3.2 特征描述与特征匹配
import cv2
import matplotlib.pyplot as plt
img1=cv2.imread('timg.jpg')
img2=cv2.imread('timg2.jpg')
orb=cv2.ORB_create(500)
kp1=orb.detect(img1)
kp2=orb.detect(img2)
kp1,desc1=orb.compute(img1,kp1)
kp2,desc2=orb.compute(img2,kp2)
bf=cv2.BFMatcher(cv2