poj 3279 Fliptile (状压)

本文介绍了一道经典的翻转问题——Fliptile,目标是最少次数翻转矩阵中的方块,使所有方块颜色一致。文章详细解析了问题解决思路与步骤,并提供了完整的代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接:http://poj.org/problem?id=3279


Fliptile
Time Limit: 2000MS Memory Limit: 65536K
Total Submissions: 7831 Accepted: 2935

Description

Farmer John knows that an intellectually satisfied cow is a happy cow who will give more milk. He has arranged a brainy activity for cows in which they manipulate an M × N grid (1 ≤ M ≤ 15; 1 ≤ N ≤ 15) of square tiles, each of which is colored black on one side and white on the other side.

As one would guess, when a single white tile is flipped, it changes to black; when a single black tile is flipped, it changes to white. The cows are rewarded when they flip the tiles so that each tile has the white side face up. However, the cows have rather large hooves and when they try to flip a certain tile, they also flip all the adjacent tiles (tiles that share a full edge with the flipped tile). Since the flips are tiring, the cows want to minimize the number of flips they have to make.

Help the cows determine the minimum number of flips required, and the locations to flip to achieve that minimum. If there are multiple ways to achieve the task with the minimum amount of flips, return the one with the least lexicographical ordering in the output when considered as a string. If the task is impossible, print one line with the word "IMPOSSIBLE".

Input

Line 1: Two space-separated integers:  M and  N 
Lines 2.. M+1: Line  i+1 describes the colors (left to right) of row i of the grid with  N space-separated integers which are 1 for black and 0 for white

Output

Lines 1.. M: Each line contains  N space-separated integers, each specifying how many times to flip that particular location.

Sample Input

4 4
1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

Sample Output

0 0 0 0
1 0 0 1
1 0 0 1
0 0 0 0

Source

[Submit]   [Go Back]   [Status]   [Discuss]


题目大意:给出一个地图,上面有 黑(1)白(0)砖,反转一块砖, 可以连带着将它的上下左右都反转,黑反转成白, 白变成黑,

                 问你用最少的反转次数,使得所有砖都变成  白砖,并输出,如果有多种方案,输出字典序最小的


解析:枚举第一行所有情况,第一行确定后,后面都定了, 从00000.....到11111....如果上一行当前位置为黑,则它的正下方必须反转,

          最后判断最后一行是否全为 0,  是 0 就是这种方案可行

          借鉴大牛的博客:http://blog.youkuaiyun.com/HelloWorld10086/article/details/45874945


代码如下:

#include<iostream>
#include<algorithm>
#include<map>
#include<stack>
#include<queue>
#include<vector>
#include<set>
#include<string>
#include<cstdio>
#include<cstring>
#include<cctype>
#include<cmath>
#define N 19
using namespace std;
const int inf = 1e9;
const int mod = 1<<30;
const double eps = 1e-8;
const double pi = acos(-1.0);
typedef long long LL;
int mp[N][N], g[N][N], tm[N][N], rec[N][N];
int m, n, ans;
int nx[6] = {-1, 0, 0, 1, 0};
int ny[6] = {0, -1, 1, 0, 0};

int check()  // 判断是否满足条件
{
    for(int i = 1; i <= n; i++)
        if(g[m][i] == 1) return 0;
    return 1;
}

void flip(int x, int y)  // 改变状态,反转x, y 后 g[N][N] 数组的状态
{
    int u, v;
    tm[x][y] = 1;
    for(int i = 0; i <= 4; i++)
    {
         u = x + nx[i];
         v = y + ny[i];
         g[u][v] = !g[u][v];
    }
}

void solve(int s)
{
    int i, j, cnt = 0;
    memset(tm, 0, sizeof(tm)); //标记是否反转过
    memcpy(g, mp, sizeof(mp)); //重复操作
    for(i = 0; i < n; i++)
    {
        if((s >> i) & 1)
            flip(1, i + 1), cnt++;
    }

    for(i = 2; i <= m; i++)
    for(j = 1; j <= n; j++)
        if(g[i - 1][j])  flip(i, j), cnt++;

    if(check() && cnt < ans)
    {
        memcpy(rec, tm, sizeof(tm));
        ans = cnt;
    }
}


int main()
{
    int i, j;
    scanf("%d%d", &m, &n);

    for(i = 1; i <= m; i++)
    for(j = 1; j <= n; j++)
       scanf("%d", &mp[i][j]);
    int k = 1 << n;
    ans = inf;
    for(i = 0; i <= k; i++) // 枚举所以状态
        solve(i);

    if(ans != inf)
    {
        for(i = 1; i <= m; i++)
            for(j = 1; j <= n;j++)
            printf("%d%c", rec[i][j], j == n ? '\n' : ' ');
    }
    else printf("IMPOSSIBLE\n");
    return 0;

}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值