题目链接:http://lightoj.com/volume_showproblem.php?problem=1134
Time Limit: 2 second(s) | Memory Limit: 32 MB |
You are given an array with N integers, and another integer M. You have to find the number of consecutive subsequences which are divisible by M.
For example, let N = 4, the array contains {2, 1, 4, 3} and M = 4.
The consecutive subsequences are {2}, {2 1}, {2 1 4}, {2 1 4 3}, {1}, {1 4}, {1 4 3}, {4}, {4 3} and {3}. Of these 10 'consecutive subsequences', only two of them adds up to a figure that is a multiple of 4 - {1 4 3} and {4}.
Input
Input starts with an integer T (≤ 10), denoting the number of test cases.
Each case contains two integers N (1 ≤ N ≤ 105) and M (1 ≤ M ≤ 105). The next line contains N space separated integers forming the array. Each of these integers will lie in the range [1, 105].
Output
For each case, print the case number and the total number of consecutive subsequences that are divisible by M.
Sample Input | Output for Sample Input |
2 4 4 2 1 4 3 6 3 1 2 3 4 5 6 | Case 1: 2 Case 2: 11 |
Note
Dataset is huge. Use faster i/o methods.
题目大意:求是m的倍数并且连续的子序列的个数
解析:根据前缀和求
代码如下:
#include<iostream>
#include<algorithm>
#include<map>
#include<stack>
#include<queue>
#include<set>
#include<string>
#include<cstdio>
#include<cstring>
#include<cctype>
#include<cmath>
#define N 100009
using namespace std;
const int inf = 0x3f3f3f3f;
const int mod = 1e9 + 7;
const double eps = 1e-8;
const double pi = acos(-1.0);
typedef long long LL;
int a[N], s[N];
int main()
{
int t, cnt = 0;
int i, num;
cin >> t;
while(t--)
{
memset(s, 0, sizeof(s));
int n, m;
scanf("%d%d", &n, &m); a[0] = 0;
for(i = 1; i <= n; i++)
{
scanf("%d", &num);
a[i] = (a[i - 1] + num) % m;
s[a[i]]++;
}
LL ans = 0;
for(i = 0; i < m; i++)
ans += (LL)s[i] * ((LL)s[i] - 1LL) / 2LL;
printf("Case %d: %lld\n", ++cnt, ans + s[0]);
}
return 0;
}