来自《挑战程序设计竞赛》
1.题目原文
| Time Limit: 5000MS | Memory Limit: 131072K | |
| Total Submissions: 5885 | Accepted: 2219 | |
| Case Time Limit: 2000MS | ||
Description
Given a m-by-n (0,1)-matrix, of all its submatrices of all 1’s which is the largest? By largest we mean that the submatrix has the most elements.
Input
The input contains multiple test cases. Each test case begins with m and n (1 ≤ m, n ≤ 2000) on line. Then come the elements of a (0,1)-matrix in row-major order on m lines each with n numbers. The input ends once EOF is met.
Output
For each test case, output one line containing the number of elements of the largest submatrix of all 1’s. If the given matrix is of all 0’s, output 0.
Sample Input
2 2 0 0 0 0 4 4 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0
Sample Output
0 4
Source
2.解题思路
3.AC代码
#include<algorithm>
#include<cctype>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iomanip>
#include<iostream>
#include<map>
#include<queue>
#include<string>
#include<set>
#include<vector>
#include<cmath>
#include<bitset>
#include<stack>
#include<sstream>
#include<deque>
#include<utility>
using namespace std;
#define maxn 2005
typedef pair<int,int> P;
int m,n;
int a[maxn][maxn];
int u[maxn][maxn];
int l[maxn][maxn],r[maxn][maxn];
void pre()
{
memset(u,0,sizeof(u));
for(int i=1;i<=m;i++){
for(int j=1;j<=n;j++){
if(a[i][j]==0) u[i][j]=0;
else u[i][j]=u[i-1][j]+1;
}
}
}
void solve()
{
stack<P> s;
pre();
for(int i=1;i<=m;i++){
while(!s.empty()) s.pop();
for(int j=1;j<=n;j++){
while(!s.empty()&&s.top().first>=u[i][j]){
s.pop();
}
if(s.empty()) l[i][j]=1;
else l[i][j]=s.top().second+1;
s.push(P(u[i][j],j));
}
}
for(int i=1;i<=m;i++){
while(!s.empty()) s.pop();
for(int j=n;j>=1;j--){
while(!s.empty()&&s.top().first>=u[i][j]){
s.pop();
}
if(s.empty()) r[i][j]=m;
else r[i][j]=s.top().second-1;
s.push(P(u[i][j],j));
}
}
int res=0;
for(int i=1;i<=m;i++){
for(int j=1;j<=n;j++){
res=max(res,u[i][j]*(r[i][j]-l[i][j]+1));
}
}
printf("%d\n",res);
}
int main()
{
while(scanf("%d%d",&m,&n)!=EOF){
for(int i=1;i<=m;i++){
for(int j=1;j<=n;j++){
scanf("%d",&a[i][j]);
}
}
solve();
}
return 0;
}
最大全1子矩阵求解

本文介绍一种高效算法,用于解决给定0-1矩阵中寻找全为1的最大子矩阵的问题。通过预处理向上连续1的数量,并使用单调栈求解每行柱状图最大面积,实现O(n^2)的时间复杂度。
1791

被折叠的 条评论
为什么被折叠?



