HDU_1141 求n! <= 2^x,最大的n

本文介绍了一个计算问题,即如何找到一个整数n,使得n!的值小于等于2^x。通过使用对数性质和迭代计算的方法,程序实现了对于给定的x值,找出最大的n满足条件。代码中运用了C++标准库函数进行对数运算,并通过数组存储中间结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

已知n! <= 2^x,可得log2(1) + log2(2) + log2(3) + ……+log2(n) <= log2(2^x) = x

#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<iostream>
using namespace std;
#define log2(x) log10((double)x)/log10(2.0)
int main(){
	int arr[(2160-1960)/10+1];
	arr[0] = 4;
	for(int i = 1; i < sizeof(arr)/sizeof(int); i++){
		arr[i] = arr[i-1] * 2;
	}
	double sum;
	int i,j;
	for(i = 0,j = 2,sum = 0; i < sizeof(arr)/sizeof(int); i++){
		while(sum <= arr[i]){
			sum += log2(j++); 
		}
		sum -= log2(--j);//把超的log2(j)减去,此时j对应的log2(j)是超的,因此不超最大的j应该是j-1 
		arr[i] = j - 1;
	}
	int n;
	while(~scanf("%d",&n)&&n!=0){
		printf("%d\n",arr[(n-1960)/10]);
	}
	
	
	return 0;
} 


现在不会TLE了,但还是WA了: #include <bits/stdc++.h> using namespace std; #define int long long const int INF = 0x3f3f3f3f; const int MAX_N = 2e5 + 50; int T, n, m, a[MAX_N]; #define ls(cur) cur << 1 #define rs(cur) cur << 1 | 1 namespace SegmentTree1 { // the case of a[i] <= x long long sum[MAX_N << 2], vtag[MAX_N << 2]; int cnt[MAX_N << 2], stag[MAX_N << 2]; void pushup(int cur) { sum[cur] = sum[ls(cur)] + sum[rs(cur)]; cnt[cur] = cnt[ls(cur)] + cnt[rs(cur)]; } void mark(int cur, int sign, long long val) { sum[cur] *= sign; sum[cur] += cnt[cur] * val; stag[cur] *= sign; vtag[cur] += val; } void pushdown(int cur) { if (stag[cur] != 1) { mark(ls(cur), stag[cur], 0); mark(rs(cur), stag[cur], 0); stag[cur] = 1; } if (vtag[cur]) { mark(ls(cur), 1, vtag[cur]); mark(rs(cur), 1, vtag[cur]); vtag[cur] = 0; } } void build(int cur, int l, int r) { stag[cur] = 1; vtag[cur] = 0; if (l == r) { sum[cur] = cnt[cur] = 0; return ; } int mid = l + r >> 1; build(ls(cur), l, mid); build(rs(cur), mid + 1, r); pushup(cur); } void insert(int cur, int l, int r, int idx, int val) { if (l == r) { sum[cur] = val; cnt[cur] = 1; return ; } pushdown(cur); int mid = l + r >> 1; if (idx <= mid) insert(ls(cur), l, mid, idx, val); else insert(rs(cur), mid + 1, r, idx, val); pushup(cur); } void modify(int cur, int l, int r, int L, int R, int val) { if (L <= l && r <= R) { mark(cur, -1, val); return ; } pushdown(cur); int mid = l + r >> 1; if (L <= mid) modify(ls(cur), l, mid, L, R, val); if (mid + 1 <= R) modify(rs(cur), mid + 1, r, L, R, val); pushup(cur); } long long query(int cur, int l, int r, int L, int R) { if (L <= l && r <= R) return sum[cur]; pushdown(cur); int mid = l + r >> 1; long long res = 0; if (L <= mid) res += query(ls(cur), l, mid, L, R); if (mid + 1 <= R) res += query(rs(cur), mid + 1, r, L, R); return res; } }; namespace SegmentTree2 { // the case of a[i] > x long long sum[MAX_N << 2], tag[MAX_N << 2]; int cnt[MAX_N << 2], mn[MAX_N << 2]; void pushup(int cur) { sum[cur] = sum[ls(cur)] + sum[rs(cur)]; cnt[cur] = cnt[ls(cur)] + cnt[rs(cur)]; mn[cur] = min(mn[ls(cur)], mn[rs(cur)]); } void mark(int cur, long long val) { sum[cur] -= cnt[cur] * val; mn[cur] -= bool(cnt[cur]) * val; tag[cur] += val; } void pushdown(int cur) { if (tag[cur]) { mark(ls(cur), tag[cur]); mark(rs(cur), tag[cur]); tag[cur] = 0; } } void build(int cur, int l, int r, int val[]) { tag[cur] = 0; if (l == r) { sum[cur] = mn[cur] = val[l]; cnt[cur] = 1; return ; } int mid = l + r >> 1; build(ls(cur), l, mid, val); build(rs(cur), mid + 1, r, val); pushup(cur); } void modify(int cur, int l, int r, int L, int R, int val) { if (l == r && mn[cur] <= val) { SegmentTree1::insert(1, 1, n, l, mn[cur]); sum[cur] = cnt[cur] = 0, mn[cur] = INF; return ; } if (L <= l && r <= R && mn[cur] > val) { mark(cur, val); return ; } pushdown(cur); int mid = l + r >> 1; if (L <= mid) modify(ls(cur), l, mid, L, R, val); if (mid + 1 <= R) modify(rs(cur), mid + 1, r, L, R, val); pushup(cur); } long long query(int cur, int l, int r, int L, int R) { if (L <= l && r <= R) return sum[cur]; pushdown(cur); int mid = l + r >> 1; long long res = 0; if (L <= mid) res += query(ls(cur), l, mid, L, R); if (mid + 1 <= R) res += query(rs(cur), mid + 1, r, L, R); return res; } }; signed main() { ios::sync_with_stdio(false); cin.tie(0), cout.tie(0); cin >> T; while (T--) { cin >> n >> m; for (int i = 1; i <= n; i++) cin >> a[i]; SegmentTree1::build(1, 1, n); SegmentTree2::build(1, 1, n, a); for (int opt, l, r, x; m--; ) { cin >> opt >> l >> r; if (opt == 1) { cin >> x; SegmentTree2::modify(1, 1, n, l, r, x); SegmentTree1::modify(1, 1, n, l, r, x); } else { long long ans1 = SegmentTree1::query(1, 1, n, l, r); long long ans2 = SegmentTree2::query(1, 1, n, l, r); cout << ans1 + ans2 << &#39;\n&#39;; } } } return 0; }
最新发布
07-29
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值