Minimum Inversion Number
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 16195 Accepted Submission(s): 9851
Problem Description
The inversion number of a given number sequence a1, a2, ..., an is the number of pairs (ai, aj) that satisfy i < j and ai > aj.
For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:
a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)
You are asked to write a program to find the minimum inversion number out of the above sequences.
For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:
a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)
You are asked to write a program to find the minimum inversion number out of the above sequences.
Input
The input consists of a number of test cases. Each case consists of two lines: the first line contains a positive integer n (n <= 5000); the next line contains a permutation of the n integers from 0 to n-1.
Output
For each case, output the minimum inversion number on a single line.
Sample Input
10 1 3 6 9 0 8 5 7 4 2
Sample Output
16
注意这里的build函数不需要额外的操作,只需要建好树即可,下面其实就是很朴素的区间和问题,求出逆序数之后,还需要一个一个地把第一个数放到最后去,求解这样做产生的贡献,最后求得最小值。
/*------------------Header Files------------------*/
#include <iostream>
#include <cstring>
#include <string>
#include <cstdio>
#include <algorithm>
#include <cstdlib>
#include <ctype.h>
#include <cmath>
#include <stack>
#include <queue>
#include <deque>
#include <map>
#include <vector>
#include <limits.h>
using namespace std;
/*------------------Definitions-------------------*/
#define LL long long
#define PI acos(-1.0)
#define INF 0x3F3F3F3F
#define MOD 1E9+7
#define MAX 500050
#define lson rt<<1,l,m
#define rson rt<<1|1,m+1,r
/*---------------------Work-----------------------*/
int n,tree[5050<<2],num[5050];
void pushup(int rt)
{
tree[rt]=tree[rt<<1]+tree[rt<<1|1];
}
void build(int rt,int l,int r) //初始化操作,此题的建树没有多余操作
{
tree[rt]=0;
if(l==r) return ;
int m=(l+r)>>1;
build(lson);
build(rson);
}
void update(int rt,int l,int r,int p)
{
if(l==r)
{
tree[rt]++;
return ;
}
int m=(l+r)>>1;
if(p<=m) update(lson,p);
else update(rson,p);
pushup(rt);
}
int query(int rt,int l,int r,int L,int R)
{
if(L<=l&&R>=r) return tree[rt];
int m=(l+r)>>1;
int sum=0;
if(L<=m) sum+=query(lson,L,R);
if(R>m) sum+=query(rson,L,R);
return sum;
}
void work()
{
while(scanf("%d",&n)==1)
{
build(1,0,n-1); //区间只能0到n-1,源于题意,根结点不能从0开始
int sum=0;
for(int i=0;i<n;i++)
{
scanf("%d",&num[i]);
sum+=query(1,0,n-1,num[i],n-1);
update(1,0,n-1,num[i]);
}
//开始转换求最小值
int ans=sum; //sum记录目前的逆序数值
for(int i=0;i<n;i++)
{
sum=sum-num[i]+n-1-num[i];
ans=min(ans,sum);
}
printf("%d\n",ans);
}
}
/*------------------Main Function------------------*/
int main()
{
//freopen("test.txt","r",stdin);
//freopen("cowtour.out","w",stdout);
//freopen("cowtour.in","r",stdin);
work();
return 0;
}