【Codevs 1088】神经网络 【NOIP 2003】

这篇博客讨论了人工神经网络的简化模型,重点在于理解兰兰同学提出的神经网络模型,并通过程序来验证其实用性。文章介绍了神经元的工作原理,包括输入、输出渠道和状态计算,并展示了神经网络的层次结构。问题描述部分详细阐述了神经元的状态计算公式以及整个网络如何根据输入层的状态进行运算,最终目标是计算输出层的状态。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


人工神经网络(Artificial Neural Network)是一种新兴的具有自我学习能力的计算系统,在模式识别、函数逼近及贷款风险评估等诸多领域有广泛的应用。对神经网络的研究一直是当今的热门方向,兰兰同学在自学了一本神经网络的入门书籍后,提出了一个简化模型,他希望你能帮助他用程序检验这个神经网络模型的实用性。

【问题描述】

在兰兰的模型中,神经网络就是一张有向图,图中的节点称为神经元,而且两个神经

元之间至多有一条边相连,下图是一个神经元的例子:

神经元〔编号为1)

图中,X1—X3是信息输入渠道,Y1-Y2是信息输出渠道,C1表示神经元目前的状态,

Ui是阈值,可视为神经元的一个内在参数。

神经元按一定的顺序排列,构成整个神经网络。在兰兰的模型之中,神经网络中的神

经无分为几层;称为输入层、输出层,和若干个中间层。每层神经元只向下一层的神经元

输出信息,只从上一层神经元接受信息。下图是一个简单的三层神经网络的例子。

兰兰规定,Ci服从公式:(其中n是网络中所有神经元的数目)

神经网络公式

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

真·skysys

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值