00 文章基本信息
01 摘要
当前RNNs在处理neighbor check-ins时存在的弊端:
- rarely consider the spatio-temporal intervals between neighbor
check-ins, which are essential for modeling user check-in behaviors
in next POI recommendation. - 换言之:现有的基于RNN的方法在对用户短期偏好建模时,要么忽略了用户的长期偏好,要么忽略了最近访问的poi之间的地理关系,使得我们的推荐结果并不可靠。
our contributions:
- we propose a new Spatio-Temporal Gated Network (STGN) by
enhancing long-short term memory network;针对上述局限性,我们提出了一种新的长短期偏好建模方法(LSTPM)。 - two pairs of time gate and distance gate are designed to control the
short-term interest and the long-term interest updates, respectively; - we introduce coupled input and forget gates to reduce the number of
parameters and further improve efficiency; - we evaluate the proposed mode