1.加载数据集 并切分 from sklearn.datasets import load_boston boston = load_boston() from sklearn.cross_validation import train_test_split import numpy as np x_train,x_test,y_train,y_test = train_test_split(x,y,random_state=33,test_size=0.25) 2.数据预处理 #分析一下数值的差异 print('最大值',np.max(boston.target)) print('最大值',np.min(boston.target)) print('均值',np.mean(boston.target)) #对数据进行预处理 预处理模块 StandardScaler fit() 模型训练 transform fit_transform #标准化处理 from sklearn.preprocessing import ss_x=StandardScaler() ss_y=StandardScaler() #分别对训练集合测试集 及特征值进行标准化处理 # x_train=ss_x.fit_transform(x_train) x_test = ss_x.transform(x_test) #将标签数据转换为 m行1列 y_train = np.array(y_train).reshape(-1,1) y_train = ss_y.fit_transform(y_train) y_test = np.array(y_test).reshape(-1,1) y_test = ss_y.transform(y_test) 3.建模预测 rom sklearn.linea