1.加载数据集并分隔为特征和标签 导包
import numpy as np
import matplotlib.pyplot as plt
from sklearn import neighbors,datasets,cross_validation
def load_classification_data():
digits=datasets.load_digits()
print('数据集的大小',digits.data.shape)
x_train=digits.data
y_train=digits.target
return cross_validation.train_test_split(x_train,y_train,test_size=0.25,random_state=0,stratify=y_train)
x_train,x_test,y_train,y_test = load_classification_data()
2.建立模型 测试评分
def test_KNN(*data):
x_train,x_test,y_train,y_test = data
clf=neighbors.KNeighborsClassifier()
clf.fit(x_train,y_train)
print('训练集上的评分:%f'%clf.score(x_train,y_train))
print('测试集上的评分:%f'%clf.score(x_test,y_test))
输出结果:
训练集上的评分:0.991091 测试集上的评分:0.980000
3.调参 利用超参数搜索知道找最优参数
KNeighborsClassifier模型中几个比较重要的参数
k 选取几个近领点
weights=['uniform','distance'] weights为uniform表示统一权重 distance按距离加权
P 几种不同的距离计算公式
#超参数搜索
from sklearn.model_selection import GridSearchCV
ps=[1,2,10]
ks=[4,5,6,7,8,9,10]
ws=['uniform','distance']
param_grid={'p':ps,'n_neighbors':ks,'weights':ws}
cls=GridSearchCV(neighbors.KNeighborsClassifier(),param_grid,cv=5)
cls.fit(x_train,y_train)
print('最佳效果:%0.3f'%cls.best_score_)
print('最佳参数组合')
best_params=cls.best_estimator_.get_params()
for param_name in sorted(param_grid.keys()):
print('\t%s:%r' %(param_name,best_params[param_name]))
print('训练集上的评分:%f'%cls.score(x_train,y_train))
print('测试集上的评分:%f'%cls.score(x_test,y_test))
#使用最佳参数重新预测
digits=datasets.load_digits()
clf=neighbors.KNeighborsClassifier(p=2,n_neighbors=4,weights='uniform')
clf.fit(x_train,y_train)
y_pre=cls.predict(x_test)
print("准确率",clf.score(x_test,y_test))
from sklearn.metrics import classification_report
print(classification_report(y_test,y_pre))