Spark之Core高级知识分享三(Spark on yarn)

1.YARN产生背景

生产中spark作业几乎都是跑在yarn上,不用Standalone,因为集群中可能有MR、Spark、MPI等各类作业,若跑在各自的资源调度框架上,那么整体集群的资源利用率肯定是有问题的。
为了统一作业调度以及资源管理,yarn就诞生了,当前YARN能支持所有主流作业的资源管理和作业调度(batch、交互式、online、strem、in-memory、机器学习、图计算等框架),它是一个操作系统级别的资源管理和调度框架
1

2.YARN的架构

  • 角色:RM、NM、AM、Container。
  • 每个juese的职责以及重试(作业挂了)机制这里不过描述
  • YARN的通用执行架构流程如下图
    10

3.Spark on Yarn概述

Spark on yarn模式下,spark仅仅是一个客户端而已,生产中只需要在有gateway权限机器上直接解压部署spark即可,非常的方便。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值