TensorFlow入门-09.感知机与多层网络

本文探讨了感知机与多层神经网络的区别,指出单层神经网络无法解决异或问题,而多层网络通过组合特征提取能有效解决。实验表明,含4个神经元的隐藏层及非线性激活函数是解决异或问题的基础配置。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

感知机:单层神经网络,没有隐藏层。

问题:不能解决异或问题。

多层网络:具有解决异或问题的能力。

多层网络解决问题的原理:深层神经网络实际上有组合特征提取的功能。这个特性对于解决不易提取特征向量的问题(比如图像识别、语音识别等)有很大的帮助。这也是深度学习在这些问题上更容易取得突破性进展的原因。

注意:以下两个样例的激活函数均为非线性函数

未加入隐藏层的神经网络的分类效果:

 

加入了一个含四个神经元的隐藏层之后的分类效果:

小结:

经过修改神经网络的层数,隐藏层神经元个数,激活函数。我们发现:

1.解决异或问题的基本配置是一个含4个神经元的隐藏层,且激活函数为非线性函数的神经网络。

2.隐藏层的层数可以增加,在该样例中对分类的影响不大。

3.若设置的隐藏层数为1,那么该隐藏层中的神经元数量应大于等于特征矩阵维度的维度次方。这样方便在隐藏层实现对特征的组合。(作者未推导,仅是猜想)

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值