为什么不读顶级会议论文?

看了版上很多贴子,发现很多版友都在问“热门研究方向”、“最新方法”等。有同学建议国内某教授的教材、或者CNKI、或者某些SCI期刊。每当看到这种问题,我都有点纳闷,为什么不去读顶级会议上的论文?


我无意否认以上文献的价值,但是在机器学习、计算机视觉和人工智能领域,顶级会议才是王道。国内教材和CNKI上的基本是N年前老掉牙的东西。有人会质疑这些会议都只是EI。是的,这的确非常特殊:在许多其它领域,会议都是盛会,比如society of neuroscience的会议,每次都有上万人参加,带个abstract和poster就可以去。但在所讨论的几个领域,顶级会议的重要性无论怎么强调都不为过。 

可以从以下几点说明:(1)因为机器学习、计算机视觉和人工智能领域发展非常迅速,新的工作层出不穷,如果把论文投到期刊上,一两年后刊出时就有点out了。因此大部分最新的工作都首先发表在顶级会议上,这些顶级会议完全能反映“热门研究方向”、“最新方法”。(2)很多经典工作大家可能引的是某顶级期刊上的论文,这是因为期刊论文表述得比较完整、实验充分。但实际上很多都是在顶级会议上首发。比如PLSA, Latent Dirichlet Allocation等。(3)如果注意这些领域大牛的pulications,不难发现他们很非常看重这些顶级会议,很多人是80%的会议+20%的期刊。即然大牛们把最新工作发在顶级会议上,有什么理由不去读顶级会议? 

(1)以下是不完整的列表,但基本覆盖。 
机器学习顶级会议:NIPS, ICML, UAI, AISTATS;  (期刊:JMLR, ML, Trends in ML, IEEE T-NN) 
计算机视觉和图像识别:ICCV, CVPR, ECCV;  (期刊:IEEE T-PAMI, IJCV, IEEE T-IP) 
人工智能:IJCAI, AAAI; (期刊AI) 
另外相关的还有SIGRAPH, KDD, ACL, SIGIR, WWW等。 
特别是,如果做机器学习,必须地,把近4年的NIPS, ICML翻几遍;如果做计算机视觉,要把近4年的ICCV, CVPR, NIPS, ICML翻几遍。 

(2)另外补充一下:大部分顶级会议的论文都能从网上免费下载到,比如CV方面:http://www.cvpapers.com/index.html; NIPS: http://books.nips.cc/;  JMLR(期刊):http://jmlr.csail.mit.edu/papers/;  COLT和ICML(每年度的官网): http://www.cs.mcgill.ca/~colt2009/proceedings.html。希望这些信息对大家有点帮助。 

(3)说些自己的感受。我的研究方向主要是统计学习和概率图模型,但对计算机视觉和计算神经科学都有涉及,对Data mining和IR也有些了解。这些领域,从方法和模型的角度看,统计模型(包括probabilistic graphical model和statistical learning theory)是主流也是非常有影响力的方法。有个非常明显的趋势:重要的方法和模型最先在NIPS或ICML出现,然后应用到CV,IR和MM。虽然具体问题和应用也很重要,但多关注和结合这些方法也很有意义。 
对于这个领域的牛人们,以上全是浅显的废话,完全可以无视。欢迎讨论。

 

 

 

注:

NIPS = Neural Information Processing Systems  https://nips.cc/

ICML = International Conference on Machine Learning https://icml.cc

UAI(AUAI) =Association for Uncertainty in Artifical Intelligence http://www.auai.org/

AISTATS = Artificial Intelligence and Statistics http://www.aistats.org/

JMLR = Journal of Machine Learning Research http://jmlr.org/

IJCAI = International Joint Conference on Artifical Intelligence http://ijcai.org/

AAAI = Association for the Advancement of Aritifical Intelligence http://www.aaai.org/home.html

智能网联汽车的安全员高级考试涉及多个方面的专业知识,包括但不限于自动驾驶技术原理、车辆传感器融合、网络安全防护以及法律法规等内容。以下是针对该主题的一些核心知识解析: ### 关于智能网联车安全员高级考试的核心内容 #### 1. 自动驾驶分级标准 国际自动机工程师学会(SAE International)定义了六个级别的自动驾驶等级,从L0到L5[^1]。其中,L3及以上级别需要安全员具备更高的应急处理能力。 #### 2. 车辆感知系统的组成与功能 智能网联车通常配备多种传感器,如激光雷达、毫米波雷达、摄像头和超声波传感器等。这些设备协同工作以实现环境感知、障碍物检测等功能[^2]。 #### 3. 数据通信与网络安全 智能网联车依赖V2X(Vehicle-to-Everything)技术进行数据交换,在此过程中需防范潜在的网络攻击风险,例如中间人攻击或恶意软件入侵[^3]。 #### 4. 法律法规要求 不同国家和地区对于无人驾驶测试及运营有着严格的规定,考生应熟悉当地交通法典中有关自动化驾驶部分的具体条款[^4]。 ```python # 示例代码:模拟简单决策逻辑 def decide_action(sensor_data): if sensor_data['obstacle'] and not sensor_data['emergency']: return 'slow_down' elif sensor_data['pedestrian_crossing']: return 'stop_and_yield' else: return 'continue_driving' example_input = {'obstacle': True, 'emergency': False, 'pedestrian_crossing': False} action = decide_action(example_input) print(f"Action to take: {action}") ``` 需要注意的是,“同学”作为特定平台上的学习资源名称,并不提供官方认证的标准答案集;建议通过正规渠道获取教材并参加培训课程来准备此类资格认证考试
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值