主成分分析(PCA)(principal component analysis)

本文主要讲PCA的相关数学推导。PCA的数学推导用线性代数的知识就可以完成。

参考deeplearningbook.org一书2.12 Example: Principal Components Analysis

参考李航统计学习方法第16章主成分分析

本文的目录如下:

目录

用到的知识点

PCA 数学推导

PCA去中心化

基于奇异值分解的计算方法

结论


我们先讲两个用到的线性代数知识点:

用到的知识点

1、矩阵对角线元素之和(the trace operator)

矩阵对角线元素之和(the trace operator),记做 Tr ,定义如下:

它有如下的性质:

1一个矩阵的trace等于它的转置的trace

2 循环置换性

 

 2、矩阵的 Frobenius norm :

 它有如下的性质:

 好啦,两个小知识点说完,就开始PCA啦~

PCA 数学推导

我们有 \mathbb{R}^{n} 空间上的 m  个点\{\boldsymbol{x}^{(1)},\boldsymbol{x}^{(2)},\cdot \cdot \cdot ,\boldsymbol{x}^{(m)} \},每一个点都是 n 维的向量。我们把这些点存起来, 要用 m\times n 个单位内存空间,如果我们空间有限,能不能用更少的空间存储和原来差不多的信息,使得信息减少尽可能的小。一个方法就是降维,对于每个点 \boldsymbol{x}^{(i)}\in \mathbb{R}^{n},我们找到这个点对应的的 \boldsymbol{c}^{(i)}\in \mathbb{R}^{l},并且 l < n,这样就可以减少原始数据的存储空间,用数学表达式表示出来就是f(\boldsymbol{x})=\boldsymbol{c}\boldsymbol{x}\approx g(f(\boldsymbol{x})) ,这里的 \boldsymbol{x} 指 \boldsymbol{x}^{(i)}c 指 \boldsymbol{c}^{(i)} ,为了看着方便,我们后边就用\boldsymbol{x} 和 \boldsymbol{c}表示任意点的原始向量和降维之后的向量,f 函数是编码函数(encoding function),g  函数是解编码函数(decoding function)。(为什么要用解码函数呢?因为\boldsymbol{x}n维向量,\boldsymbol{c}l维向量,不同维度的向量无法比较)

PCA就是提供了这样一种降维的方法。

开始正式推导啦~

PCA的推导先从解编码函数说起,为了使解编码函数尽可能简单,可以选择矩阵相乘的方式使得g(\boldsymbol{c})=\boldsymbol{D}\boldsymbol{c},其中\boldsymbol{D}\in \mathbb{R}^{n\times l}。如果不做任何限制,计算最优的\boldsymbol{D}比较困难,所以对 \boldsymbol{D} 做一些限制的话看看能不能得到我们想要的效果。事实上我们可以假设 \boldsymbol{D} 的每一列之间都是正交的,(此时的\boldsymbol{D}还不是正交矩阵,因为l\neq n)。为了使编码后的向量唯一,限制\boldsymbol{D}的每一列向量都是单位向量。对\boldsymbol{D}做了这个限制后计算最优的\boldsymbol{D}就比原来简单很多。

PCA需要同时求出优秀的\boldsymbol{D}\boldsymbol{c},同时求两个毫不相干的最优解求不出来,我们是否可以先保持一个变量\boldsymbol{D}不变,求出最优的\boldsymbol{c}

<think>好的,我现在需要回答用户关于主成分分析PCA)的概念、实现方法和应用场景的问题。首先,我得回顾一下自己了解的PCA知识,同时结合用户提供的引用内容,确保回答准确且符合要求。 用户提供的引用中有几个关键点需要注意。引用[1]提到PCA是数据的方法之一,引用[3]和[4]详细解释了PCA的原理,包括其作为非监督学习的方法,通过特征值分解进行数据压缩和去噪,以及主成分是原始数据的线性组合。引用[5]给出了一个使用scikit-learn实现PCA的代码示例。此外,引用[3]还提到了PCA的变种,如KPCA、增量PCA和稀疏PCA,这些可能在回答优化或应用部分有用。 首先,我需要明确用户的问题分为三个部分:概念、实现方法和应用场景。结构上应该分点回答,每个部分清晰。同时,根据系统级指令,行内数学公式需要用$...$,独立公式用$$...$$,并且正确使用LaTeX语法。还要生成相关问题,并在引用处添加标识。 概念部分,需要解释PCA的基本原理。根据引用[4],PCA是一种线性变换技术,用于并保留大部分信息。主成分是正交变换后的新坐标轴,是原始变量的线性组合。这里可能需要提到方差最大化,即PCA找到数据方差最大的方向作为第一主成分,后续成分与前面的正交且方差次大。需要数学表达式,比如协方差矩阵、特征值分解等。例如,协方差矩阵的计算公式,特征值和特征向量的作用。 实现方法部分,引用[5]中的代码示例是一个很好的起点。需要分步骤说明PCA的实现过程,包括数据标准化、计算协方差矩阵、特征分解、选择主成分、投影数据等步骤。同时,可以提到使用scikit-learn的PCA类简化流程。这里需要确保代码块正确,并解释关键参数如n_components。 应用场景部分,根据引用[1]、[3]、[4],PCA常用于数据压缩、可视化、去噪、特征提取等。比如在图像处理、金融数据分析、生物信息学等领域。需要具体例子,如人脸识别中的,或基因组数据中的特征提取。同时,引用[3]提到的变种应用场景,如KPCA处理非线性数据,可以补充说明。 在写作过程中,要检查数学公式的正确性。例如,协方差矩阵的公式是否正确,特征值分解的表示是否准确。例如,协方差矩阵的计算应该是$\frac{1}{n-1}X^TX$,其中$X$是标准化后的数据矩阵。特征分解部分,协方差矩阵分解为$W\Lambda W^T$,其中$W$是特征向量矩阵,$\Lambda$是特征值对角矩阵。 此外,需要确保每个引用标识正确对应到用户提供的引用内容。例如,提到PCA作为非监督学习的方法时引用[3],提到主成分是线性组合时引用[4],代码示例引用[5]。 生成相关问题部分,需要考虑用户可能进一步想知道的内容,比如PCA的优缺点、与其他方法的比较、参数选择的影响、数学推导细节等。例如,如何选择主成分的数量,PCA与LDA的区别,PCA的假设是否限制其应用等。 最后,要确保回答结构清晰,分点明确,语言通顺,符合中文习惯。同时,行内公式正确使用$符号,独立公式单独成段,并正确使用LaTeX语法,例如协方差矩阵、投影公式等。</think>### 主成分分析PCA)详解 #### 一、概念与数学原理 主成分分析PCA)是一种**非监督学习的线性方法**,核心是通过正交变换将高数据映射到低空间,同时保留最大方差信息[^3]。其数学原理包含以下关键步骤: 1. **数据标准化**:将原始数据去中心化(均值为0),公式为: $$X_{\text{norm}} = X - \mu \quad (\mu \text{为均值向量})$$ 2. **协方差矩阵计算**:标准化后的数据计算协方差矩阵: $$C = \frac{1}{n-1}X_{\text{norm}}^T X_{\text{norm}}$$ 3. **特征值分解**:对协方差矩阵$C$进行特征分解,得到特征值$\lambda_i$和对应特征向量$W$: $$C = W \Lambda W^T \quad (\Lambda \text{为特征值对角矩阵})$$ 4. **主成分选择**:按特征值从大到小排序,选取前$k$个特征向量构成投影矩阵$W_k$,将原始数据投影到低空间: $$Z = X_{\text{norm}} W_k$$ 每个主成分对应一个特征向量,其重要性由特征值$\lambda_i$衡量,方差贡献率为$\lambda_i / \sum \lambda_i$[^4]。 --- #### 二、实现方法(Python示例) 使用`scikit-learn`实现PCA的完整流程: ```python from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler # 数据标准化(PCA前必须) scaler = StandardScaler() X_scaled = scaler.fit_transform(X) # 初始化PCA pca = PCA(n_components=2) # 指定保留2个主成分 X_pca = pca.fit_transform(X_scaled) # 查看方差贡献率 print("方差贡献率:", pca.explained_variance_ratio_) ``` **关键参数说明**: - `n_components`:可设为整数(目标度)或小数(保留方差的百分比,如0.95) - `svd_solver`:优化算法选择(如`auto`, `full`, `randomized`) --- #### 三、应用场景 1. **数据可视化**:将高数据至2D/3D,便于绘制散点图观察分布。 2. **特征压缩**:减少图像、语音等数据的存储和计算成本[^4]。 3. **去噪与预处理**:通过保留主成分过滤噪声,提升模型鲁棒性。 4. **多变量分析**:在金融领域分析股票收益率的关联性,或在生物信息学中处理基因表达数据[^1][^4]。 **案例**: 在人脸识别中,PCA可将数万像素的图片至几十个主成分(特征脸),显著提升分类效率。 --- #### 四、优化与限制 - **优化方法**: - **核PCA(KPCA)**:通过核函数处理非线性数据。 - **增量PCA**:适用于内存不足的大数据集[^3]。 - **局限性**: - 主成分的可解释性较弱(线性组合可能缺乏物理意义)。 - 对异常值敏感,需提前标准化处理。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值