Leetcode --- 684. Redundant Connection 判断是否有环 /并查集

本文介绍了解决图中寻找冗余连接的问题,通过两种方法:深度优先搜索和并查集,来找出导致图出现环的额外边。适用于含有N个节点的无向图,探讨了如何在加入新的边后保持图的树形结构。

684. Redundant Connection

Medium

727196FavoriteShare

In this problem, a tree is an undirected graph that is connected and has no cycles.

The given input is a graph that started as a tree with N nodes (with distinct values 1, 2, ..., N), with one additional edge added. The added edge has two different vertices chosen from 1 to N, and was not an edge that already existed.

The resulting graph is given as a 2D-array of edges. Each element of edges is a pair [u, v] with u < v, that represents an undirected edge connecting nodes u and v.

Return an edge that can be removed so that the resulting graph is a tree of N nodes. If there are multiple answers, return the answer that occurs last in the given 2D-array. The answer edge [u, v] should be in the same format, with u < v.

Example 1:

Input: [[1,2], [1,3], [2,3]]
Output: [2,3]
Explanation: The given undirected graph will be like this:
  1
 / \
2 - 3

 

Example 2:

Input: [[1,2], [2,3], [3,4], [1,4], [1,5]]
Output: [1,4]
Explanation: The given undirected graph will be like this:
5 - 1 - 2
    |   |
    4 - 3

 

Note:

  • The size of the input 2D-array will be between 3 and 1000.
  • Every integer represented in the 2D-array will be between 1 and N, where N is the size of the input array.

 

 

Update (2017-09-26):
We have overhauled the problem description + test cases and specified clearly the graph is an undirected graph. For the directed graph follow up please see Redundant Connection II). We apologize for any inconvenience caused.

方法一: 

 

class Solution {
public:
	vector<int> findRedundantConnection(vector<vector<int>>& edges) {
		unordered_map<int, unordered_set<int>> m;//用邻接表来记录图
		for (auto edge : edges) {
			if (hasCircle(edge[0],edge[1],m,-1)) {//设置pre,防止 1-->2,2-->1这种情况
				
				return edge;
			}
			m[edge[0]].insert(edge[1]);
			m[edge[1]].insert(edge[0]);
		}
		return {};
	}
	bool hasCircle(int cur,int target, unordered_map<int, unordered_set<int>> m,int pre) {
		if (cur==target)return true;//说明另外一条路径也能到target!
		for (int e : m[cur]) {
			if (e == pre) continue;
			if (hasCircle(e, target, m, cur))
				return true;
		}
		return false;

	}
};

 方法而:使用并查集

加入边之前判断两个端点是否属于同一组,如果属于同一组,说明两个端点之间已经有一条路径了,如果再加入这条边的话就会有环!

class Solution {//使用并查集
public:
	vector<int>v;
	vector<int> findRedundantConnection(vector<vector<int>>& edges) {
		v.assign(1002, -1);
		for (auto edge : edges) {
			int x = find(edge[0]);
			int y = find(edge[1]);
			if (x == y)return edge;
			v[y] = x;
		}
		return {};
	}
	
	int find(int i) {//返回并查集的根
		while (v[i] != -1) {
			i = v[i];
		}
		return i;
	}
	
};

 

LeetCode684 题“冗余连接”要求在给定的无向图中找到一条冗余边。该题通常使用并查集(Union-Find)算法来解决,因为它可以高效地检测两个节点是否属于同一个连通分量。 以下是一个基于并查集的 C++ 实现示例: ```cpp #include <vector> #include <iostream> using namespace std; class UnionFind { private: vector<int> parent; vector<int> rank; public: UnionFind(int n) { parent.resize(n); rank.resize(n, 0); for (int i = 0; i < n; ++i) { parent[i] = i; } } int find(int x) { if (parent[x] != x) { parent[x] = find(parent[x]); // 路径压缩 } return parent[x]; } bool unionSets(int x, int y) { int rootX = find(x); int rootY = find(y); if (rootX == rootY) { return false; // 已经在同一个集合中,y 是冗余边 } // 按秩合并 if (rank[rootX] < rank[rootY]) { parent[rootX] = rootY; } else if (rank[rootX] > rank[rootY]) { parent[rootY] = rootX; } else { parent[rootY] = rootX; rank[rootX]++; } return true; } }; class Solution { public: vector<int> findRedundantConnection(vector<vector<int>>& edges) { int n = edges.size(); UnionFind uf(n); for (const auto& edge : edges) { int u = edge[0] - 1; // 节点编号从 0 开始 int v = edge[1] - 1; if (!uf.unionSets(u, v)) { return {u + 1, v + 1}; // 返回原始编号 } } return {}; } }; int main() { Solution sol; vector<vector<int>> edges = {{1, 2}, {1, 3}, {2, 3}}; vector<int> result = sol.findRedundantConnection(edges); cout << "Redundant connection: [" << result[0] << ", " << result[1] << "]" << endl; return 0; } ``` ### 代码说明: 1. **UnionFind 类**:实现了并查集的数据结构,包含路径压缩和按秩合并优化。 - `find(int x)`:查找 `x` 的根节点,并进行路径压缩。 - `unionSets(int x, int y)`:合并 `x` 和 `y` 所在的集合,返回是否成功合并。 2. **Solution 类**: - `findRedundantConnection(vector<vector<int>>& edges)`:遍历每条边,使用并查集判断是否形成。如果两个节点已经在同一集合中,则当前边是冗余边。 ### 测试用例: 输入: ```cpp edges = {{1, 2}, {1, 3}, {2, 3}} ``` 输出: ```cpp Redundant connection: [2, 3] ``` 此代码的时间复杂度为 $O(n \alpha(n))$,其中 $\alpha(n)$ 是阿克曼函数的反函数,可以认为是一个非常小的常数;空间复杂度为 $O(n)$,用于存储并查集结构。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值