- descrption
In this problem, a tree is an undirected graph that is connected and has no cycles.
The given input is a graph that started as a tree with N nodes (with distinct values 1, 2, …, N), with one additional edge added. The added edge has two different vertices chosen from 1 to N, and was not an edge that already existed.
The resulting graph is given as a 2D-array ofedges
. Each element ofedges
is a pair [u, v] with u < v, that represents an undirected edge connecting nodesu
andv
.
Return an edge that can be removed so that the resulting graph is a tree of N nodes. If there are multiple answers, return the answer that occurs last in the given 2D-array. The answer edge[u, v]
should be in the same format, withu < v
.
Example 1:
Input: [[1,2], [1,3], [2,3]]
Output: [2,3]
Explanation: The given undirected graph will be like this:
1
/ \
2 - 3
Example 2:
Input: [[1,2], [2,3], [3,4], [1,4], [1,5]]
Output: [1,4]
Note:
The size of the input 2D-array will be between 3 and 1000.
Every integer represented in the 2D-array will be between 1 and N, where N is the size of the input array. 解题思路
首先有N个节点的一棵树,加上了一条边后变成了一个有环的无向图。题目让我们找到多余的一条边(删去这条边后可以得到树),如果有多条符合的边,删去最后出现的一条。
这道题有两种思路:
第一种,用并查集算法,下面代码就是用的这种算法。遍历每一条边,找到每个node的根节点,如果一条边的两个node的根节点是同一节点,那么这条边就是冗余的,最后找到的这条边就是要删去的边。
第二种,其实与第一种算法类似,但是这种理解更简单,还是遍历每条边,如果边的两个node都是第一次出现或者其中一个node是第一次出现,那么这条边绝对不可能是冗余的边,不可能构成环。如果一条边的两个node在前面的边的node中都出现过,那么这条边肯定会构成环,这条边就是要找的冗余边。代码如下
class Solution {
public:
vector<int> findRedundantConnection(vector<vector<int>>& edges) {
//root of every node, if the root is the same, then the edge is redundant
int size = edges.size()+1;
vector<int> root(size);
//ans
vector<int> ans;
//in the begining, every node's root is itself
for(int i = 1; i <= edges.size(); i++){
root[i] = i;
}
//find the root of every node
for(int i = 0; i < edges.size(); i++){
Union(edges[i][0], edges[i][1], root, ans);
}
return ans;
}
void Union(int first, int second, vector<int>& root, vector<int>& ans){
int root1 = findroot(first, root);
int root2 = findroot(second, root);
if(root1 != root2){
root[root2] = root1;
}
else{
ans.clear();
ans.push_back(first);
ans.push_back(second);
}
}
int findroot(int node, vector<int>& root){
while(node != root[node]){
node = findroot(root[node], root);
}
return node;
}
};
原题地址
如有错误请指出,谢谢!