Problem Description
A number sequence is defined as follows:
f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7.
Given A, B, and n, you are to calculate the value of f(n).
f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7.
Given A, B, and n, you are to calculate the value of f(n).
Input
The input consists of multiple test cases. Each test case contains 3 integers A, B and n on a single line (1 <= A, B <= 1000, 1 <= n <= 100,000,000). Three zeros signal the end of input and this test case is not to be processed.
Output
For each test case, print the value of f(n) on a single line.
Sample Input
1 1 3 1 2 10 0 0 0
Sample Output
2 5网上关于此题的结题思路有这么两种:1.将n模48进行计算。这样的解法认为结果循环大小为48或48的约数,也就是f(1) = f(49)。2.在程序中求出循环大小。此种解法认为f(n)值的最大循环数为48,但是具体多少在程序中动态求出。下面是两种解法的代码(经测试是都能AC的,但是有个小BUG一会儿在下面指出): 第一种: #include<stdio.h> int main() { int A, B, i; long int n; while (scanf("%d%d%ld", &A, &B, &n) != EOF) { int a[50]; a[1] = 1; a[2] = 1; if ((A + B + n) == 0)break; for (i = 3; i <= 48; i++) { a[i] = (A*a[i - 1] + B*a[i - 2]) % 7; } n = n % 48; a[0] = a[48]; printf("%d\n", a[n]); } return 0; } 第二种: #include<stdio.h> int f[50] = { 0, 1, 1 }; int main() { int a, n, i, b; while (scanf("%d%d%d", &a, &b, &n) != EOF) { if (a + b + n == 0) break; for (i = 3; i<50; i++) { f[i] = (a*f[i - 1] + b*f[i - 2]) % 7; if ((f[i] == f[2]) && (f[i - 1] == f[1])) break; } i -= 2; if (n%i == 0) n = i; else n %= i; printf("%d\n", f[n]); } return 0; } 那么问题来了,通过我的实际验证确实存在循环数不是48或48的约数的情况,比如:20,33,49 ,在第一个程序结果为1,在第二个程序中结果为4,显然其中有一种解法是错误的,但是确都可以AC。
本文探讨了一道关于数列求值的问题,给出了两种不同的解题思路和对应的代码实现,并通过实例验证了不同解法的有效性和潜在问题。
682

被折叠的 条评论
为什么被折叠?



