Number Sequence
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 158133 Accepted Submission(s): 38729
Problem Description
A number sequence is defined as follows:
f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7.
Given A, B, and n, you are to calculate the value of f(n).
f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7.
Given A, B, and n, you are to calculate the value of f(n).
Input
The input consists of multiple test cases. Each test case contains 3 integers A, B and n on a single line (1 <= A, B <= 1000, 1 <= n <= 100,000,000). Three zeros signal the end of input and this test case is not to be processed.
Output
For each test case, print the value of f(n) on a single line.
Sample Input
1 1 3 1 2 10 0 0 0
Sample Output
2 5
Author
CHEN, Shunbao
Source
Recommend
可以发现一个规律:因为对7取模,f[n]不超过7,从中间或者开头开始形成一个周期,找到这个周期循环就可以
code:
<span style="font-size:14px;">#include<cstdio>
long long f[100000000];
int main()
{
long long n;
int a,b,j;
while(scanf("%d%d%lld",&a,&b,&n)!=EOF&&a!=0&&b!=0&&n!=0)
{
f[1]=1;f[2]=1;
int s=0;//记录周期
for(int i=3;i<=n;i++)
{
f[i]=(a*f[i-1]+b*f[i-2])%7;
for(j=2;j<i;j++)
{
if(f[i]==f[j]&&f[i-1]==f[j-1])//确定前两个找到一个周期
{s=i-j;break;
}
}
if(s>0)break;
}
if(s>0)
f[n]=f[(n-j)%s+j];//周期循环并加上前面不参加循环的数
printf("%lld\n",f[n]);
}
return 0;
} </span>
另一种code:
#include<iostream>
using namespace std;
int f(int A, int B,int n)
{
if(n==1 || n==2)
return 1;
else
return (A*f(A,B,n-1)+B*f(A,B,n-2))%7;
}
int main()
{
int a,b,n;
while(cin>>a>>b>>n,a||b||n)
{
cout<<f(a,b,n%49)<<endl;
}
return 1;
}