蓝桥杯 小朋友排队(树状数组求逆序对)

本文介绍了一个经典的算法问题——小朋友排队,旨在寻找使所有小朋友按身高排序时,其不高兴程度之和最小的方法。通过详细解释问题背景、输入输出格式及样例说明,展示了如何运用编程技巧解决此类问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  历届试题 小朋友排队  
时间限制:1.0s   内存限制:256.0MB
    
问题描述
  n 个小朋友站成一排。现在要把他们按身高从低到高的顺序排列,但是每次只能交换位置相邻的两个小朋友。

  每个小朋友都有一个不高兴的程度。开始的时候,所有小朋友的不高兴程度都是0。

  如果某个小朋友第一次被要求交换,则他的不高兴程度增加1,如果第二次要求他交换,则他的不高兴程度增加2(即不高兴程度为3),依次类推。当要求某个小朋友第k次交换时,他的不高兴程度增加k。

  请问,要让所有小朋友按从低到高排队,他们的不高兴程度之和最小是多少。

  如果有两个小朋友身高一样,则他们谁站在谁前面是没有关系的。
输入格式
  输入的第一行包含一个整数n,表示小朋友的个数。
  第二行包含 n 个整数 H1 H2 … Hn,分别表示每个小朋友的身高。
输出格式
  输出一行,包含一个整数,表示小朋友的不高兴程度和的最小值。
样例输入
3
3 2 1
样例输出
9
样例说明
  首先交换身高为3和2的小朋友,再交换身高为3和1的小朋友,再交换身高为2和1的小朋友,每个小朋友的不高兴程度都是3,总和为9。
数据规模和约定
  对于10%的数据, 1<=n<=10;
  对于30%的数据, 1<=n<=1000;
  对于50%的数据, 1<=n<=10000;

  对于100%的数据,1<=n<=100000,0<=Hi<=1000000。

#include<cstdio>
#include<iostream>
//#define lowbit(x) ((x)&(-x))
typedef long long ll;
using namespace std;
const int maxn=100100;
const int high=1000010;
int n;
int h[maxn];
int c[high];
ll a[maxn]={0};
int b[maxn];
int lowbit(int x){return x&(-x);}
void update(int x,int v){
for(int i=x;i<=high;i+=lowbit(i)){
c[i]+=v;
}


}




int getSum(int x){
    int sum=0;
    for(int i=x;i>0;i-=lowbit(i))
    sum+=c[i];

return sum;
}


int main()
{
       // freopen("d://jin.txt","r",stdin);
        cin>>n;
        for(int i=1;i<=n;i++){
            cin>>h[i];
           h[i]++;

        update(h[i],1);

        int sum=getSum(h[i]);
        b[i]=getSum(h[i]-1);
        a[i]=i-sum;
        //cout<<i<<" "<<sum<<" "<<a[i]<<endl;
        }

         for(int i=1;i<=n;i++){
        int sum=getSum(h[i]-1);
        a[i]+=sum-b[i];

        }
        ll ans=0;
       for(int i=1;i<=n;i++){
          // cout<<a[i]<<endl;
       ans+=a[i]*(a[i]+1)/2;

       }
       cout<<ans;




    return 0;
}


### 使用树状数组(Fenwick Tree)计算逆序对 #### 方法概述 树状数组是一种支持高效单点更新和前缀和查询的数据结构,其核心思想是通过一种特殊的二进制表示方法来存储部分前缀和,从而使得每次更新或查询的时间复杂度降低至 \(O(\log n)\)[^1]。对于逆序对问题,可以通过从右向左遍历数组的方式,利用树状数组记录已经访问过的元素并统计小于当前元素的数量。 具体做法如下: - 将原数组中的数值离散化为排名值,以便减少内存占用。 - 初始化一个长度等于最大排名值的树状数组。 - 从右往左依次处理每个元素,先查询该元素之前有多少个大于它的数,再将其加入树状数组中[^2]。 --- #### 核心代码实现 (C++) 以下是基于 C++ 的树状数组实现逆序对计数的具体代码: ```cpp #include <iostream> #include <vector> #include <algorithm> using namespace std; // 定义树状数组类 class FenwickTree { public: vector<int> tree; int size; FenwickTree(int n) : size(n), tree(n + 1, 0) {} // 更新某个位置的值 void update(int index, int value) { while (index <= size) { tree[index] += value; index += index & (-index); } } // 查询某一段区间的前缀和 int query(int index) const { int sum = 0; while (index > 0) { sum += tree[index]; index -= index & (-index); } return sum; } }; int countInversions(vector<int>& nums) { if (nums.empty()) return 0; // 离散化过程 vector<int> sortedNums(nums.begin(), nums.end()); sort(sortedNums.begin(), sortedNums.end()); sortedNums.erase(unique(sortedNums.begin(), sortedNums.end()), sortedNums.end()); auto getRank = [&](const int& num) -> int { return lower_bound(sortedNums.begin(), sortedNums.end(), num) - sortedNums.begin() + 1; }; int rankSize = sortedNums.size(); FenwickTree fenwick(rankSize); long long inversionCount = 0; for (auto it = nums.rbegin(); it != nums.rend(); ++it) { // 反向迭代 int rank = getRank(*it); inversionCount += fenwick.query(rank - 1); // 统计前面比它小的数 fenwick.update(rank, 1); // 插入当前数 } return inversionCount; } int main() { vector<int> nums = {7, 5, 6, 4}; cout << "Number of inversions: " << countInversions(nums) << endl; // 输出应为 5 return 0; } ``` 上述代码定义了一个 `FenwickTree` 类用于管理树状数组的操作,并提供了一种通用的方式来计算任意整数序列中的逆序对数目[^3]。 --- #### 关键点解析 1. **离散化** 原始数组可能包含非常大的整数值,这会显著增加树状数组的空间需。因此,通常需要将原始数组映射到一个小范围内的连续整数集合上,这一过程称为离散化[^4]。 2. **反向遍历** 计算逆序对的关键是从最后一个元素开始逐步向前扫描整个数组。这样做的好处是可以动态维护已知范围内所有可能出现的小于当前元素的次数。 3. **时间复杂度分析** 整个算法由两部分组成:一是排序与去重后的离散化阶段;二是实际运用树状数组完成倒置对统计的部分。总体来看,这两个环节都维持在 \(O(n \log n)\),其中 \(n\) 表示输入列表大小。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值