poj--3624--Charm Bracelet(动态规划 水题)

本文介绍了一种基于动态规划解决的魅力手链问题。问题描述了如何在给定重量限制下选择最佳组合的装饰物以最大化魅力值。文章提供了完整的代码实现,并通过样例输入输出展示了算法的有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

POJ - 3624
Time Limit: 1000MS Memory Limit: 65536KB 64bit IO Format: %I64d & %I64u

Status

Description

Bessie has gone to the mall's jewelry store and spies a charm bracelet. Of course, she'd like to fill it with the best charms possible from the N (1 ≤ N ≤ 3,402) available charms. Each charm i in the supplied list has a weight Wi (1 ≤ Wi ≤ 400), a 'desirability' factor Di (1 ≤ Di ≤ 100), and can be used at most once. Bessie can only support a charm bracelet whose weight is no more than M (1 ≤ M ≤ 12,880).

Given that weight limit as a constraint and a list of the charms with their weights and desirability rating, deduce the maximum possible sum of ratings.

Input

* Line 1: Two space-separated integers: N and M
* Lines 2..N+1: Line i+1 describes charm i with two space-separated integers: Wi and Di

Output

* Line 1: A single integer that is the greatest sum of charm desirabilities that can be achieved given the weight constraints

Sample Input

4 6
1 4
2 6
3 12
2 7

Sample Output

23

Source




#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int dp[100100];
struct node
{
	int w,val;
}edge[100100];
int main()
{
	int m,n;
	while(scanf("%d%d",&m,&n)!=EOF)
	{
		memset(dp,0,sizeof(dp));
		for(int i=0;i<m;i++)
		scanf("%d%d",&edge[i].w,&edge[i].val);
		for(int i=0;i<m;i++)
		for(int j=n;j>=edge[i].w;j--)
		dp[j]=max(dp[j],dp[j-edge[i].w]+edge[i].val);
		printf("%d\n",dp[n]);
	}
	return 0;
}



FAQ | About Virtual Judge | Forum | Discuss | Open Source Project
All Copyright Reserved ©2010-2014 HUST ACM/ICPC TEAM
Anything about the OJ, please ask in the forum, or contact author: Isun
Server Time: 2015-10-14 17:57:36
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值