1115 Counting Nodes in a BST (30 分)
A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:
- The left subtree of a node contains only nodes with keys less than or equal to the node's key.
- The right subtree of a node contains only nodes with keys greater than the node's key.
- Both the left and right subtrees must also be binary search trees.
Insert a sequence of numbers into an initially empty binary search tree. Then you are supposed to count the total number of nodes in the lowest 2 levels of the resulting tree.
Input Specification:
Each input file contains one test case. For each case, the first line gives a positive integer N (≤1000) which is the size of the input sequence. Then given in the next line are the N integers in [−10001000] which are supposed to be inserted into an initially empty binary search tree.
Output Specification:
For each case, print in one line the numbers of nodes in the lowest 2 levels of the resulting tree in the format:
n1 + n2 = n
where n1
is the number of nodes in the lowest level, n2
is that of the level above, and n
is the sum.
Sample Input:
9
25 30 42 16 20 20 35 -5 28
Sample Output:
2 + 4 = 6
题目大意: 构建出bst,然后输出最高层数和次高层数的结点数以及结点数之和。这个可以通过一次先序遍历访问对应层数的结点,并配合map来记录层数的结点数,即可轻松解决。
#include <iostream>
#include <queue>
#include <map>
using namespace std;
struct btnode{
int v;
btnode *left,*right;
};
int n,max_level = -1;
vector<int> vec;
map<int,int> mp;
void insert(btnode *&node,int value){
if(node == nullptr)
{
node = new btnode();
node->v = value;
node->left = node->right = nullptr;
return ;
}
if(node->v >= value)
{
insert(node->left,value);
}else
insert(node->right,value);
}
void createBST(btnode *&node){
for(int i=0;i<n;i++){
insert(node,vec[i]);
}
}
void pre(btnode *node,int level){
if(node == nullptr)
return;
if(level > max_level)
max_level = level;
mp[level]++;
pre(node->left,level+1);
pre(node->right,level+1);
}
int main(){
cin>>n;
vec.resize(n);
for(int i=0;i<n;i++){
cin>>vec[i];
}
btnode *root = nullptr;
createBST(root);
pre(root,1);
int a = mp[max_level],b = mp[max_level-1];
cout<<a<<" + "<<b<<" = "<<a+b<<endl;
return 0;
}