目标
转载:https://blog.youkuaiyun.com/xw20084898/article/details/22101673
本文档尝试解答如下问题:
了解图像边缘原理 sobel提取边缘原理准备知识 图像可以理解成 z=f(x,y) z便是灰度值
原理
Note
以下内容来自于Bradski和Kaehler的大作: Learning OpenCV .
上面两节我们已经学习了卷积操作。一个最重要的卷积运算就是导数的计算(或者近似计算).
为什么对图像进行求导是重要的呢? 假设我们需要检测图像中的 边缘 ,如下图:
你可以看到在 边缘 ,相素值显著的 改变 了。表示这一 改变 的一个方法是使用 导数 。 梯度值的大变预示着图像中内容的显著变化。
用更加形象的图像来解释,假设我们有一张一维图形。下图中灰度值的”跃升”表示边缘的存在:
使用一阶微分求导我们可以更加清晰的看到边缘”跃升”的存在(这里显示为高峰值)
从上例中我们可以推论检测边缘可以通过定位梯度值大于邻域的相素的方法找到(或者推广到大于一个阀值).
更加详细的解释,请参考Bradski 和 Kaehler的 Learning OpenCV 。