MNIST自学
各个函数的参数含义:
t
f
.
t
r
u
n
c
a
t
e
d
_
n
o
r
m
a
l
(
s
h
a
p
e
,
m
e
a
n
=
0.0
,
s
t
d
d
e
v
=
1.0
,
d
t
y
p
e
=
t
f
.
f
l
o
a
t
32
,
s
e
e
d
=
N
o
n
e
,
n
a
m
e
=
N
o
n
e
)
{tf.truncated\_normal(shape, mean=0.0, stddev=1.0,dtype=tf.float32,seed=None,name=None)}
tf.truncated_normal(shape,mean=0.0,stddev=1.0,dtype=tf.float32,seed=None,name=None)
s
h
a
p
e
shape
shape表示生成张量的维度,
m
e
a
n
mean
mean是均值,
s
t
d
d
e
v
stddev
stddev是标准差。这个函数产生正态分布,均值和标准差自己设定。产生截断正态分布随机数,取值范围为
[
m
e
a
n
−
2
∗
s
t
d
d
e
v
,
m
e
a
n
+
2
∗
s
t
d
d
e
v
]
{[mean -2*stddev,mean+2*stddev]}
[mean−2∗stddev,mean+2∗stddev]
卷积: t f . n n . c o n v 2 d ( i n p u t , f i l t e r , s t r i d e s , p a d d i n g , u s e _ c u d n n _ o n _ g p u = N o n e , n a m e = N o n e ) {tf.nn.conv2d(input, filter, strides, padding, use\_cudnn\_on\_gpu=None, name=None)} tf.nn.conv2d(input,filter,strides,padding,use_cudnn_on_gpu=None,name=None)
i
n
p
u
t
input
input:输入的要做卷积的图片,要求为一个张量,
s
h
a
p
e
shape
shape为
[
b
a
t
c
h
,
i
n
_
h
e
i
g
h
t
,
i
n
_
w
e
i
g
h
t
,
i
n
_
c
h
a
n
n
e
l
]
[batch,in\_height,in\_weight,in\_channel]
[batch,in_height,in_weight,in_channel],其中
b
a
t
c
h
batch
batch为图片的数量,
i
n
_
h
e
i
g
h
t
in\_height
in_height为图片高度,
i
n
_
w
e
i
g
h
t
in\_weight
in_weight为图片宽度,
i
n
_
c
h
a
n
n
e
l
in\_channel
in_channel为图片的通道数,灰度图该值为1,彩色图为3。
f
i
l
t
e
r
filter
filter:卷积核,要求也是一个张量,
s
h
a
p
e
shape
shape为
[
f
i
l
t
e
r
_
h
e
i
g
h
t
,
f
i
l
t
e
r
_
w
e
i
g
h
t
,
i
n
_
c
h
a
n
n
e
l
,
o
u
t
_
c
h
a
n
n
e
l
s
]
[filter\_height, filter\_weight, in\_channel, out\_channels]
[filter_height,filter_weight,in_channel,out_channels],其中
f
i
l
t
e
r
_
h
e
i
g
h
t
filter\_height
filter_height为卷积核高度,
f
i
l
t
e
r
_
w
e
i
g
h
t
filter\_weight
filter_weight为卷积核宽度,
i
n
_
c
h
a
n
n
e
l
in\_channel
in_channel是图像通道数 ,和
i
n
p
u
t
input
input的
i
n
_
c
h
a
n
n
e
l
in\_channel
in_channel要保持一致,
o
u
t
_
c
h
a
n
n
e
l
out\_channel
out_channel是卷积核数量。
s
t
r
i
d
e
s
strides
strides:卷积时在图像每一维的步长,这是一个一维的向量,
[
1
,
s
t
r
i
d
e
s
,
s
t
r
i
d
e
s
,
1
]
[1,strides,strides,1]
[1,strides,strides,1],第一位和最后一位固定必须是1。
p
a
d
d
i
n
g
padding
padding:
s
t
r
i
n
g
string
string类型,值为
“
S
A
M
E
”
“SAME”
“SAME”和
“
V
A
L
I
D
”
“VALID”
“VALID”,表示的是卷积的形式,是否考虑边界。
“
S
A
M
E
”
“SAME”
“SAME”是考虑边界,不足的时候用0去填充周围,
“
V
A
L
I
D
”
“VALID”
“VALID”则不考虑。
u
s
e
_
c
u
d
n
n
_
o
n
_
g
p
u
use\_cudnn\_on\_gpu
use_cudnn_on_gpu:
b
o
o
l
bool
bool类型,是否使用
c
u
d
n
n
cudnn
cudnn加速,默认为
t
r
u
e
true
true。
最大池化: t f . n n . m a x _ p o o l ( v a l u e , k s i z e , s t r i d e s , p a d d i n g , n a m e = N o n e ) {tf.nn.max\_pool(value, ksize, strides, padding, name=None)} tf.nn.max_pool(value,ksize,strides,padding,name=None)
v
a
l
u
e
value
value:需要池化的输入,一般池化层接在卷积层后面,所以输入通常是
f
e
a
t
u
r
e
m
a
p
feature\ map
feature map,依然是[batch, height, width, channels]这样的shape
k
s
i
z
e
ksize
ksize:池化窗口的大小,取一个四维向量,一般是
[
1
,
h
e
i
g
h
t
,
w
i
d
t
h
,
1
]
[1, height, width, 1]
[1,height,width,1],因为我们不想在
b
a
t
c
h
batch
batch和
c
h
a
n
n
e
l
s
channels
channels上做池化,所以这两个维度设为了1。
s
t
r
i
d
e
s
strides
strides:和卷积类似,窗口在每一个维度上滑动的步长,一般也是
[
1
,
s
t
r
i
d
e
,
s
t
r
i
d
e
,
1
]
[1, stride,stride, 1]
[1,stride,stride,1]
p
a
d
d
i
n
g
padding
padding:和卷积类似,可以取
′
V
A
L
I
D
′
'VALID'
′VALID′ 或者
′
S
A
M
E
′
'SAME'
′SAME′。
Dropout(一般用在全连接层) t f . n n . d r o p o u t ( x , k e e p _ p r o b , n o i s e _ s h a p e = N o n e , s e e d = N o n e , n a m e = N o n e ) {tf.nn.dropout(x,keep\_prob,noise\_shape=None, seed=None, name=None)} tf.nn.dropout(x,keep_prob,noise_shape=None,seed=None,name=None)
x
x
x:指输入,输入
t
e
n
s
o
r
tensor
tensor
k
e
e
p
p
r
o
b
keep_prob
keepprob:
f
l
o
a
t
float
float类型,每个元素被保留下来的概率,设置神经元被选中的概率,在初始化时
k
e
e
p
_
p
r
o
b
keep\_prob
keep_prob是一个占位符。
n
o
i
s
e
_
s
h
a
p
e
noise\_shape
noise_shape:一个1维的
i
n
t
32
int32
int32张量,表示随机生成“保留/丢弃”标志的
s
h
a
p
e
shape
shape。在默认情况下,每个元素独立安排保留或者丢弃。如果已经指定
n
o
i
s
e
_
s
h
a
p
e
noise\_shape
noise_shape,则
x
x
x的形状必须为可广播的。
代码部分:全部来自于Tensorflow中文社区(http://www.tensorfly.cn/tfdoc/tutorials/mnist_pros.html)
源代码1(爬虫):
# -*- coding: utf-8 -*-
"""
Created on Tue Jul 16 09:09:01 2019
@author: Administrator
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import gzip
import os
import tensorflow.python.platform
import numpy
from six.moves import urllib
from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf
SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/'
def maybe_download(filename, work_directory):
"""Download the data from Yann's website, unless it's already here."""
if not os.path.exists(work_directory):
os.mkdir(work_directory)
filepath = os.path.join(work_directory, filename)
if not os.path.exists(filepath):
filepath, _ = urllib.request.urlretrieve(SOURCE_URL + filename, filepath)
statinfo = os.stat(filepath)
print('Successfully downloaded', filename, statinfo.st_size, 'bytes.')
return filepath
def _read32(bytestream):
dt = numpy.dtype(numpy.uint32).newbyteorder('>')
return numpy.frombuffer(bytestream.read(4), dtype=dt)[0]
def extract_images(filename):
"""Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
print('Extracting', filename)
with gzip.open(filename) as bytestream:
magic = _read32(bytestream)
if magic != 2051:
raise ValueError('Invalid magic number %d in MNIST image file: %s' %(magic, filename))
num_images = _read32(bytestream)
rows = _read32(bytestream)
cols = _read32(bytestream)
buf = bytestream.read(rows * cols * num_images)
data = numpy.frombuffer(buf, dtype=numpy.uint8)
data = data.reshape(num_images, rows, cols, 1)
return data
def dense_to_one_hot(labels_dense, num_classes=10):
"""Convert class labels from scalars to one-hot vectors."""
num_labels = labels_dense.shape[0]
index_offset = numpy.arange(num_labels) * num_classes
labels_one_hot = numpy.zeros((num_labels, num_classes))
labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
return labels_one_hot
def extract_labels(filename, one_hot=False):
"""Extract the labels into a 1D uint8 numpy array [index]."""
print('Extracting', filename)
with gzip.open(filename) as bytestream:
magic = _read32(bytestream)
if magic != 2049:
raise ValueError('Invalid magic number %d in MNIST label file: %s' %(magic, filename))
num_items = _read32(bytestream)
buf = bytestream.read(num_items)
labels = numpy.frombuffer(buf, dtype=numpy.uint8)
if one_hot:
return dense_to_one_hot(labels)
return labels
class DataSet(object):
def __init__(self, images, labels, fake_data=False, one_hot=False,dtype=tf.float32):
'''Construct a DataSet.
one_hot arg is used only if fake_data is true. `dtype` can be either
`uint8` to leave the input as `[0, 255]`, or `float32` to rescale into
`[0, 1]`.
'''
dtype = tf.as_dtype(dtype).base_dtype
if dtype not in (tf.uint8, tf.float32):
raise TypeError('Invalid image dtype %r, expected uint8 or float32' %dtype)
if fake_data:
self._num_examples = 10000
self.one_hot = one_hot
else:
assert images.shape[0] == labels.shape[0], ('images.shape: %s labels.shape: %s' % (images.shape,labels.shape))
self._num_examples = images.shape[0]
# Convert shape from [num examples, rows, columns, depth]
# to [num examples, rows*columns] (assuming depth == 1)
assert images.shape[3] == 1
images = images.reshape(images.shape[0],images.shape[1] * images.shape[2])
if dtype == tf.float32:
# Convert from [0, 255] -> [0.0, 1.0].
images = images.astype(numpy.float32)
images = numpy.multiply(images, 1.0 / 255.0)
self._images = images
self._labels = labels
self._epochs_completed = 0
self._index_in_epoch = 0
@property
def images(self):
return self._images
@property
def labels(self):
return self._labels
@property
def num_examples(self):
return self._num_examples
@property
def epochs_completed(self):
return self._epochs_completed
def next_batch(self, batch_size, fake_data=False):
"""Return the next `batch_size` examples from this data set."""
if fake_data:
fake_image = [1] * 784
if self.one_hot:
fake_label = [1] + [0] * 9
else:
fake_label = 0
return [fake_image for _ in xrange(batch_size)], [fake_label for _ in xrange(batch_size)]
start = self._index_in_epoch
self._index_in_epoch += batch_size
if self._index_in_epoch > self._num_examples:
# Finished epoch
self._epochs_completed += 1
# Shuffle the data
perm = numpy.arange(self._num_examples)
numpy.random.shuffle(perm)
self._images = self._images[perm]
self._labels = self._labels[perm]
# Start next epoch
start = 0
self._index_in_epoch = batch_size
assert batch_size <= self._num_examples
end = self._index_in_epoch
return self._images[start:end], self._labels[start:end]
def read_data_sets(train_dir, fake_data=False, one_hot=False, dtype=tf.float32):
class DataSets(object):
pass
data_sets = DataSets()
if fake_data:
def fake():
return DataSet([], [], fake_data=True, one_hot=one_hot, dtype=dtype)
data_sets.train = fake()
data_sets.validation = fake()
data_sets.test = fake()
return data_sets
TRAIN_IMAGES = 'train-images-idx3-ubyte.gz'
TRAIN_LABELS = 'train-labels-idx1-ubyte.gz'
TEST_IMAGES = 't10k-images-idx3-ubyte.gz'
TEST_LABELS = 't10k-labels-idx1-ubyte.gz'
VALIDATION_SIZE = 5000
local_file = maybe_download(TRAIN_IMAGES, train_dir)
train_images = extract_images(local_file)
local_file = maybe_download(TRAIN_LABELS, train_dir)
train_labels = extract_labels(local_file, one_hot=one_hot)
local_file = maybe_download(TEST_IMAGES, train_dir)
test_images = extract_images(local_file)
local_file = maybe_download(TEST_LABELS, train_dir)
test_labels = extract_labels(local_file, one_hot=one_hot)
validation_images = train_images[:VALIDATION_SIZE]
validation_labels = train_labels[:VALIDATION_SIZE]
train_images = train_images[VALIDATION_SIZE:]
train_labels = train_labels[VALIDATION_SIZE:]
data_sets.train = DataSet(train_images, train_labels, dtype=dtype)
data_sets.validation = DataSet(validation_images, validation_labels,dtype=dtype)
data_sets.test = DataSet(test_images, test_labels, dtype=dtype)
return data_sets
源代码2(用CNN对MNIST数据集进行分析):
# -*- coding: utf-8 -*-
"""
Created on Wed Jul 17 15:56:44 2019
@author: Administrator
"""
import tensorflow as tf
import input_data
#读取数据
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
#用占位符申明变量
x = tf.placeholder("float", [None, 784])
y_ = tf.placeholder("float", [None,10])
#构建会话
sess=tf.InteractiveSession()
#用于生成初始权重矩阵W,即filter
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
#设置偏置值b
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
#卷积函数
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
#最大池化函数
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1], padding='SAME')
#filter大小为[5,5],图片通道为1,filter数量为32
W_conv1 = weight_variable([5, 5, 1, 32])
#设置偏置值
b_conv1 = bias_variable([32])
#将图片向量变为shape[28,28]的矩阵,第一个变量为-1表示根据实际维度计算出这个shape,实则为图片数量,1表示图片通道
x_image = tf.reshape(x, [-1,28,28,1])
#进行第一次卷积,我们把x_image和权值向量W_conv1进行卷积,加上偏置项,然后应用ReLU激活函数,最后进行max pooling。
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
#进行第二次卷积,因为上次卷积应用了32个filter,因此图片通道变为32,此次使用64个filter(经验)
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)
#因为通过两次卷积池化操作后,图片大小变为[7,7],此层为密集连接层,图片通道为64,此时考虑将图片再一维化,即变为shape(1,7*7*64)的向量,考虑全连接1024个神经元,故如此设置W_fc1与b_fc1
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
#考虑减少过拟合,因此使用dropout来关闭部分神经元
keep_prob = tf.placeholder("float")
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
#输出层,添加一个softmax层
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
#使用交叉熵作为loss函数
cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv))
#采用ADAM优化器来做梯度最速下降
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
#会话初始化
sess.run(tf.initialize_all_variables())
#迭代20000次,每100次迭代,输出一次迭代误差结果
for i in range(20000):
batch = mnist.train.next_batch(50)
if i%100 == 0:
train_accuracy = accuracy.eval(feed_dict={x:batch[0],y_:batch[1],keep_prob:1.0})
print("step %d, training accuracy %g"%(i, train_accuracy))
train_step.run(feed_dict={x:batch[0],y_:batch[1],keep_prob:0.5})
#输出最终测试结果
print("test accuracy %g"%accuracy.eval(feed_dict={x:mnist.test.images,y_:mnist.test.labels,keep_prob: 1.0}))