# -*- coding: utf-8 -*-
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from tensorflow.examples.tutorials.mnist import input_data
# 用tensorflow 导入数据
mnist = input_data.read_data_sets('../../MNIST_data', one_hot=True)
print mnist.test.labels.shape
print mnist.train.labels.shape
# 权值初始化
def weight_variable(shape):
# 用正态分布来初始化权值
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
# 本例中用relu激活函数,所以用一个很小的正偏置较好
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
# 定义卷积层
def conv2d(x, W):
# 默认 strides[0]=strides[3]=1, strides[1]为x方向步长,strides[2]为y方向步长
return tf.nn.conv2d(x, W, strides=[1,1,1,1], padding='SAME')
# pooling 层
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')
X_ = tf.placeholder(tf.float32, [None, 784])
y_ = tf.placeholder(tf.float32, [None, 10])
# 把X转为卷积所需要的形式
X = tf.reshape(X_, [-1, 28, 28, 1])
# 第一层卷积:5×5×1卷积核32个 [5,5,1,32],h_conv1.shape=[-1, 28, 28, 32]
W_conv1 = weight_variable([5,5,1,32])
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(X, W_conv1) + b_conv1)
# 第一个pooling 层[-1, 28, 28, 32]->[-1, 14, 14, 32]
h_pool1 = max_pool_2x2(h_conv1)
# 第二层卷积:5×5×32卷积核64个 [5,5,32,64],h_conv2.shape=[-1, 14, 14, 64]
W_conv2 = weight_variable([5,5,32,64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
# 第二个pooling 层,[-1, 14, 14, 64]->[-1, 7, 7, 64]
h_pool2 = max_pool_2x2(h_conv2)
# flatten层,[-1, 7, 7, 64]->[-1, 7*7*64],即每个样本得到一个7*7*64维的样本
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
# fc1
W_fc1 = weight_variable([7*7*64, 1024])
b_fc1 = bias_variable([1024])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
# dropout: 输出的维度和h_fc1一样,只是随机部分值被值为零
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
# 输出层
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
# 1.损失函数:cross_entropy
cross_entropy = -tf.reduce_sum(y_ * tf.log(y_conv))
# 2.优化函数:AdamOptimizer
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
# 3.预测准确结果统计
# 预测值中最大值(1)即分类结果,是否等于原始标签中的(1)的位置。argmax()取最大值所在的下标
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.arg_max(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
# 如果一次性来做测试的话,可能占用的显存会比较多,所以测试的时候也可以设置较小的batch来看准确率
test_acc_sum = tf.Variable(0.0)
batch_acc = tf.placeholder(tf.float32)
new_test_acc_sum = tf.add(test_acc_sum, batch_acc)
update = tf.assign(test_acc_sum, new_test_acc_sum)
with tf.Session() as sess:
# 定义了变量必须要初始化,或者下面形式
sess.run(tf.global_variables_initializer())
# 或者某个变量单独初始化 如:
# x.initializer.run()
# 训练
for i in range(500):
X_batch, y_batch = mnist.train.next_batch(batch_size=50)
if i % 100 == 0:
train_accuracy = accuracy.eval(feed_dict={X_: X_batch, y_: y_batch, keep_prob: 1.0})
print "step %d, training acc %g" % (i, train_accuracy)
train_step.run(feed_dict={X_: X_batch, y_: y_batch, keep_prob: 0.5})
# 全部训练完了再做测试,batch_size=100
for i in range(100):
X_batch, y_batch = mnist.test.next_batch(batch_size=100)
test_acc = accuracy.eval(feed_dict={X_: X_batch, y_: y_batch, keep_prob: 1.0})
update.eval(feed_dict={batch_acc: test_acc})
if (i + 1) % 20 == 0:
print "testing step %d, test_acc_sum %g" % (i + 1, test_acc_sum.eval())
print " test_accuracy %g" % (test_acc_sum.eval() / 100.0)
# 显示中间结果
# 首先应该把 img 转为正确的shape (None, 784)
X_img = mnist.train.images[1].reshape([-1, 784])
y_img = mnist.train.labels[1].reshape([-1, 10])
# 我们要看 Conv1 的结果,即 h_conv1
result = h_conv1.eval(feed_dict={X_: X_img, y_: y_img, keep_prob: 1.0})
for _ in xrange(32):
show_img = result[:, :, :, _]
show_img.shape = [28, 28]
plt.subplot(4, 8, _ + 1)
plt.imshow(show_img, cmap='gray')
plt.axis('off')
plt.show()
tf实现多层cnn
最新推荐文章于 2024-06-13 21:28:21 发布