from skimage.morphology import binary_opening, binary_closing, disk, binary_erosion, binary_dilation
from skimage.util import invert
from skimage.color import rgb2gray
from skimage.io import imread
import numpy as np
import matplotlib.pyplot as plt
im = rgb2gray(imread('./9781789343731_Code/images/circles.png'))
print(np.max(im))
im[im <= 0.5] = 0
im[im > 0.5] = 1
plt.gray()
plt.figure(figsize=(20,10))
plt.subplot(231)
plt.imshow(im)
plt.title('original', size=20)
plt.axis('off')
plt.subplot(2,3,2)
im1 = binary_opening(im, disk(12))
plt.imshow(im1)
plt.title('opening with disk size ' + str(12), size=20)
plt.axis('off')
plt.subplot(2,3,3)
# im1 = invert(binary_closing(invert(im), disk(6)))
im1 = binary_closing(im, disk(6))
plt.imshow(im1)
plt.title('closing with disk size ' + str(6), size=20)
plt.axis('off')
plt.subplot(2,3,5)
im1 = binary_erosion(im, disk(12))
plt.imshow(im1)
plt.title('erosion with disk size ' + str(12), size=20)
plt.axis('off')
plt.subplot(2,3,6)
im1 = binary_dilation(im, disk(6))
plt.imshow(im1)
plt.title('dilation with disk size ' + str(6), size=20)
plt.axis('off')
plt.show()
python 开闭运算、腐蚀膨胀
最新推荐文章于 2023-03-24 14:43:25 发布