# ResNet
论文:Deep Residual Learning for Image Recognition by Kaiming He, et al
1. 模型
图片来源:动手学深度学习 by 李沐
2. 代码
import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l
class Residual(nn.Module):
def __init__(self, input_channels, num_channels, use_1x1conv=False, strides=1):
super().__init__()
self.conv1 = nn.Conv2d(input_channels, num_channels, kernel_size=3, padding=1, stride=strides)
self.conv2 = nn.Conv2d(num_channels, num_channels, kernel_size=3, padding=1)
if use_1x1conv:
self.conv3 = nn.Conv2d(input_channels, num_channels, kernel_size=1, stride=strides)
else:
self.conv3 = None
self.bn1 = nn.BatchNorm2d(num_channels)
self.bn2 = nn.BatchNorm2d(num_channels)
def forward(self, X):
Y = F.relu(self.bn1(self.conv1(X)))
Y = self.bn2(self.conv2(Y))
if self.conv3:
X = self.conv3(X)
Y += X
return F.relu(Y)
# Residual 输入输出维度相同
blk = Residual(3, 3)
X = torch.randn(4, 3, 6, 6)
Y = blk(X)
Y.shape
blk = Residual(3, 3, use_1x1conv=True, strides=2)
blk(X).shape
# res_block包含多个Residual块
def res_block(input_channels, num_channels, num_residual, first_block=False):
blk = []
for i in range(num_residual):
if i == 0 and not first_block:
blk.append(Residual(input_channels, num_channels, use_1x1conv=True, strides=2))
else:
blk.append(Residual(input_channels, num_channels))
return blk
# ResNet模型,
# 输出尺寸:224x224,通道数:1
b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3), nn.BatchNorm2d(64), nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
# 输出尺寸:112x112,通道数:64
b2 = nn.Sequential(*res_block(64, 64, 2, first_block=True))
# 输出尺寸:56x56,通道数:64
b3 = nn.Sequential(*res_block(64, 128, 2))
# 输出尺寸:28x28,通道数:128
b4 = nn.Sequential(*res_block(128, 256, 2))
# 输出尺寸:14x14,通道数:256
b5 = nn.Sequential(*res_block(256, 512, 2))
# 输出尺寸:7x7,通道数:512
net = nn.Sequential(b1,
b2,
b3,
b4,
b5,
nn.AdaptiveAvgPool2d((1, 1)), nn.Flatten(),
nn.Linear(512, 10))
X = torch.randn(1, 1, 224, 224)
for layer in net:
X = layer(X)
print(layer.__class__.__name__, ":", X.shape)