1053. Path of Equal Weight (30)
Given a non-empty tree with root R, and with weight Wi assigned to each tree node Ti. Theweight of a path from R to L is defined to be the sum of the weights of all the nodes along the path from R to any leaf node L.
Now given any weighted tree, you are supposed to find all the paths with their weights equal to a given number. For example, let's consider the tree showed in Figure 1: for each node, the upper number is the node ID which is a two-digit number, and the lower number is the weight of that node. Suppose that the given number is 24, then there exists 4 different paths which have the same given weight: {10 5 2 7}, {10 4 10}, {10 3 3 6 2} and {10 3 3 6 2}, which correspond to the red edges in Figure 1.

Figure 1
Input Specification:
Each input file contains one test case. Each case starts with a line containing 0 < N <= 100, the number of nodes in a tree, M (< N), the number of non-leaf nodes, and 0 < S < 230, the given weight number. The next line contains N positive numbers where Wi (<1000) corresponds to the tree node Ti. Then M lines follow, each in the format:
ID K ID[1] ID[2] ... ID[K]
where ID is a two-digit number representing a given non-leaf node, K is the number of its children, followed by a sequence of two-digit ID's of its children. For the sake of simplicity, let us fix the root ID to be 00.
Output Specification:
For each test case, print all the paths with weight S in non-increasing order. Each path occupies a line with printed weights from the root to the leaf in order. All the numbers must be separated by a space with no extra space at the end of the line.
Note: sequence {A1, A2, ..., An} is said to begreater than sequence {B1, B2, ..., Bm} if there exists 1 <= k < min{n, m} such that Ai = Bi for i=1, ... k, and Ak+1 > Bk+1.
Sample Input:20 9 24 10 2 4 3 5 10 2 18 9 7 2 2 1 3 12 1 8 6 2 2 00 4 01 02 03 04 02 1 05 04 2 06 07 03 3 11 12 13 06 1 09 07 2 08 10 16 1 15 13 3 14 16 17 17 2 18 19Sample Output:
10 5 2 7 10 4 10 10 3 3 6 2 10 3 3 6 2
http://www.patest.cn/contests/pat-a-practise/1053
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <string>
#include <vector>
#include <queue>
#include <algorithm>
#include <iterator>
using namespace std ;
#define INF 999999
#define N 105
int n ;
int m ;
int s ;
int weight[N] ;
vector<int> vt[N] ;
typedef struct node{
int id ;
int wi ;
vector<struct node*> childs ;
node(int _id , int _wi)
{
id = _id ;
wi = _wi ;
childs.clear() ;
}
}Tree ;
bool cmp(Tree* t1 , Tree* t2)
{
return t1->wi > t2->wi ;
}
Tree* createTree(int rid)
{
Tree* root = new node(rid , weight[rid]);
for(int i= 0;i<(int)vt[rid].size() ; i ++)
{
int child_id = vt[rid][i] ;
root->childs.push_back(createTree(child_id));
}
return root ;
}
int fa[N] ;
int wn[N] ;
void dfs(Tree* rt)
{
int len = rt->childs.size() ;
if(wn[rt->id] == s && len == 0)
{
vector<int> vs ;
vs.clear() ;
int tmp = rt->id ;
while(tmp != -1)
{
vs.push_back(weight[tmp]);
tmp = fa[tmp];
}
int vslen = vs.size() ;
for(int j = vslen - 1 ; j >= 1; j--)
printf("%d ", vs[j]) ;
printf("%d\n",vs[0]);
}
if(len > 1)
sort(rt->childs.begin() , rt->childs.end() , cmp) ;
for(int i= 0 ;i < len ; i++)
{
int child_id = rt->childs[i]->id ;
fa[child_id] = rt->id ;
wn[child_id] = weight[child_id] + wn[rt->id] ;
dfs(rt->childs[i]);
}
}
int main()
{
//freopen("in.txt","r",stdin);
int i , j ;
scanf("%d%d%d" , &n , &m , &s) ;
for(i = 0 ; i< n ; i++)
{
scanf("%d",&weight[i]) ;
}
int id , k , tmpid ;
for(i = 0 ; i < m ; i++)
{
scanf("%d%d",&id , &k);
for(j = 0 ; j < k ; j ++)
{
scanf("%d",&tmpid);
vt[id].push_back(tmpid);
}
}
Tree* root = createTree(0) ;
//pf(root);
fa[0] = -1 ;
wn[0] = weight[0] ;
dfs(root);
return 0 ;
}