1053 Path of Equal Weight
题目链接
Given a non-empty tree with root R, and with weight Wi
assigned to each tree node Ti
. The weight of a path from R to L is defined to be the sum of the weights of all the nodes along the path from R to any leaf node L.
Now given any weighted tree, you are supposed to find all the paths with their weights equal to a given number. For example, let’s consider the tree showed in the following figure: for each node, the upper number is the node ID which is a two-digit number, and the lower number is the weight of that node. Suppose that the given number is 24, then there exists 4 different paths which have the same given weight: {10 5 2 7}, {10 4 10}, {10 3 3 6 2} and {10 3 3 6 2}, which correspond to the red edges in the figure.
Input Specification:
Each input file contains one test case. Each case starts with a line containing 0<N≤100, the number of nodes in a tree, M (<N), the number of non-leaf nodes, and 0<S<2
30
, the given weight number. The next line contains N positive numbers where W
i
(<1000) corresponds to the tree node T
i
. Then M lines follow, each in the format:
ID K ID[1] ID[2] … ID[K]
where ID is a two-digit number representing a given non-leaf node, K is the number of its children, followed by a sequence of two-digit ID’s of its children. For the sake of simplicity, let us fix the root ID to be 00.

Output Specification:
For each test case, print all the paths with weight S in non-increasing order. Each path occupies a line with printed weights from the root to the leaf in order. All the numbers must be separated by a space with no extra space at the end of the line.
Note: sequence {A
1
,A
2
,⋯,A
n
} is said to be greater than sequence {B
1
,B
2
,⋯,B
m
} if there exists 1≤k<min{n,m} such that A
i
=B
i
for i=1,⋯,k, and A
k+1
>B
k+1
.
Sample Input:
20 9 24
10 2 4 3 5 10 2 18 9 7 2 2 1 3 12 1 8 6 2 2
00 4 01 02 03 04
02 1 05
04 2 06 07
03 3 11 12 13
06 1 09
07 2 08 10
16 1 15
13 3 14 16 17
17 2 18 19
Sample Output:
10 5 2 7
10 4 10
10 3 3 6 2
10 3 3 6 2
题目大意:现有一颗树,每个结点都有一个权重,求一条从根结点到叶子结点的路径,使路径上的结点的权重之和等于给定值。求出满足条件的所有路径。
分析:求路径,可使用bfs。本题给出两种参考方法。
路径排序的话,使用sort函数。
参考代码:
#include<iostream>
#include<vector>
#include<iostream>
#include<algorithm>
using namespace std;
struct node{
int w;
vector<int>child;
};
int S;
vector<int>path, temp_path;
vector<node>tree;
vector<vector<int>>paths;
void bfs(int id, int sum, int S) {
sum += tree[id].w;
path.push_back(tree[id].w);
if (sum < S) {
for (int i = 0; i < tree[id].child.size(); i++) {
int vec = tree[id].child[i];
bfs(vec, sum, S);
}
if (!path.empty()) {
path.pop_back();
}
//return;
}
else if (sum > S) {
path.pop_back();
//return;
}
else if (sum == S) {
if (tree[id].child.size() == 0) {
paths.push_back(path);
path.pop_back();
//return;
}
else {
path.pop_back();
//return;
}
}
}
bool cmp(vector<int>a, vector<int>b) {
int la = a.size(), lb = b.size();
for (int i = 0; i < la&&i < lb; i++) {
if (a[i] != b[i])
return a[i] > b[i];
}
if (la > lb)return true;
else return false;
}
void BFS(int id, int vecNum,int sum) {
temp_path[vecNum] = tree[id].w;
sum += tree[id].w;
if (sum > S)return;
else if (sum == S) {
if (tree[id].child.size() == 0) {
vector<int>ans;
for (int i = 0; i <= vecNum; i++) {
ans.push_back(temp_path[i]);
}
paths.push_back(ans);
}
else { return; }
}
else if (sum < S) {
for (int i = 0; i < tree[id].child.size(); i++) {
BFS(tree[id].child[i], vecNum + 1, sum);
}
}
}
int main() {
int N, M, id, k, vec;
cin >> N >> M >> S;
tree.resize(N);
temp_path.resize(N);
for (int i = 0; i < N; i++) {
cin >> tree[i].w;
}
for (int i = 1; i <= M; i++) {
cin >> id >> k;
for (int j = 1; j <= k; j++) {
cin >> vec;
tree[id].child.push_back(vec);
}
}
//bfs(0, 0, S);
BFS(0, 0, 0);
sort(paths.begin(), paths.end(), cmp);
for (int i = 0; i < paths.size(); i++) {
for (int j = 0; j < paths[i].size(); j++) {
cout << paths[i][j];
if (j == paths[i].size() - 1)cout << endl;
else cout << " ";
}
}
return 0;
}
欢迎评论!!!
寻找等权路径

本文探讨了在一个加权树中寻找所有从根节点到叶节点,且路径上节点权重之和等于给定数值的问题。通过使用广度优先搜索(BFS),文章提供了一种有效的解决方案,并附带了代码实现。此外,还介绍了如何对找到的路径进行排序。
358

被折叠的 条评论
为什么被折叠?



