DLX Dancing Links X Algorithm 舞蹈链 学习总结

本文深入探讨了DLX算法的应用,用于解决集合覆盖问题,特别关注可重复覆盖场景。通过构建01矩阵M,利用DancingLinks数据结构进行高效的搜索,实现最优解的寻找。详细介绍了矩阵M的构建、DancingLinks的操作以及如何通过递归和回溯求解问题,同时提供了代码示例。

最近练习搜索题时遇到一类题总是会看到DLX写的题解,于是决定花一些时间学一学。
它可以用来解决覆盖问题,可重复覆盖、精确覆盖。而且DLX算法是目前已知的十分不错的解决数独问题的算法(T^T我并不会),不过至少覆盖这一类问题,我可以用它来解决了。

暂时以可重复覆盖为例,因为要解决眼前的一道题→.→
是这么一类问题:有一些由整数1~n组成的集合S1,S2,S3……Sm,要求选择若干个集合,使得这些集合的并包含1~n所有的数。问最少需要选择几个集合。
例如:n = 5, S1 = {1, 2}, S2 = {3, 4, 5}, S3 = {4, 5}, S4 = {3, 5}
S1,S2 与 S1,S3,S4都是合法的选择,不过前者选择的个数少比后者要优。

我们可以用一个m×n的0 1矩阵M来描述这个问题,M[i][j]为1表示第i个集合中有j这个元素。

然后我们就可以用搜索解决问题:对于当前一个还没有被包含的元素i,枚举选哪个集合来包含它,递归、回溯得到最优解。

矩阵M是可变的——这么说比较形象,每当我们对于元素i找了第j个集合来包含它,那么我们就删除j集合所包含的所有的元素所在列以及第j行,递归,然后再恢复。

要做到删除整行以及整列,需要特殊的数据结构,Dancing Links便可以满足这个要求。它是循环十字链表,每个元素有4个指针,指向上下左右四个方向的临近元素,每个元素对应矩阵M中的“1”。由于是循环链表,所以最左端指向最右端,最右端指向最左端,上下亦然。

对于这个数据结构,删除、恢复整行、整列操作只需要操作这些指针。这也是很精髓的一部分,对于删除第c列,我们只需要把第c列每个元素i:
L[R[i]] = L[i]; R[L[i]] = R[i];
恢复:
L[R[i]] = i; R[L[i]] = i;
每一步递归都对应回溯,可以把删除恢复第i列看作两个连续的操作,所以这么做是无误的。

【有些内容转载自http://blog.youkuaiyun.com/keyboardlabourer/article/details/13015689】(写的很棒)
例如对一个6*7矩阵
这里写图片描述
用Dancing Links可以表示如下:
这里写图片描述

A~G表示的是每一列表头,和邻接表的h数组相似。而这里的h是总表头。

每个字母下的数字S表示的是这一列有多少元素,就是说,S值即在当前剩下的这些集合中,包括元素i的个数。当我们找还没有被包含的元素i的时候,选择S值最小的可以减少对集合的选择的枚举,以节省时间。

// 这份代码是以可重复覆盖为前提写的,所以删除、恢复操作显得有些不同,再加上自己yy的成分,就比较“另类”。可重复覆盖,只需要删除列,而不需要删除行,选中一行Si后,将Si所包含所有节点对应列删除即可,这样也是可以保证此行Si在之后的递归中不再被选到。删除对应列时,我仅仅删除了列头的虚拟指针,而不是真正的把一整列的指针全部改变,会节省时间,不过需要多开一个del数组记录第i列是被哪一行删除的。用空间换时间。

精确覆盖的话。。再等等吧。

struct DLX
{
    #define SZ 10000005

    int sz, Col, Row, ans, S[1005], del[1005], row[SZ], col[SZ];
    int U[SZ], D[SZ], L[SZ], R[SZ];

    void init(int num)
    {
        sz = num, Col = 0, Row = num, ans = 1<<30;
        memset(S, 0, sizeof S);
        memset(U, 0, sizeof U);
        memset(D, 0, sizeof D);
        memset(L, 0, sizeof L);
        memset(R, 0, sizeof R);
        memset(del, 0, sizeof del);
        memset(row, 0, sizeof row);
        memset(col, 0, sizeof col);
        for(int i = 0; i <= sz; i++)
        {
            U[i] = i, D[i] = i, L[i] = i-1, R[i] = i+1, row[i] = i;
        }
        L[0] = sz, R[sz] = 0;
    }

    void add_col(bool *x)
    {
        int fir = sz;
        Col ++;
        for(int i = 1; i <= Row; i++) if(x[i])
        {
            sz++, S[i]++;
            U[sz] = U[i], D[sz] = i, L[sz] = sz-1, R[sz] = sz+1, row[sz] = i, col[sz] = Col;
            D[U[i]] = U[i] = sz;    
        }
        if(fir != sz) R[sz] = fir+1, L[fir+1] = sz;
    }

    void remove(int c)  
    {  
        int t = c;
        do
        {
            int tt = row[t];
            if(!del[tt]) L[R[tt]] = L[tt], R[L[tt]] = R[tt], del[tt] = col[c];
            t = R[t];
        }   while(t != c);
    }  

    void resume(int c)  
    {     
        int t = c;
        do
        {
            int tt = row[t];
            if(del[tt] == col[c]) L[R[tt]] = tt, R[L[tt]] = tt, del[tt] = 0;
            t = R[t];
        }   while(t != c);
    }

    int h()
    {
        int res = 0;
        /* ... */
        return res; 
    } 

    void dfs(int sum)
    {
        if(sum + h() >= ans) return ;
        if(!R[0]) { ans = sum; return ;}

        int r, Mins = 1<<30;
        for(int j = R[0]; j; j = R[j]) if(S[j] < Mins)
        {
            Mins = S[j], r = j;
        }   

        for(int i = D[r]; i != r; i = D[i])
        {
            remove(i);
            dfs(sum + w[col[i]]);
            resume(i);
        }
    }

    void solve()
    {
        dfs(0); printf("%d", ans);
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值