面试高频必问-线索化二叉树

本文介绍了线索化二叉树的概念及其应用,通过实例详细解释了如何将二叉树进行中序线索化处理,以及如何遍历线索化后的二叉树。

线索化二叉树

1、先看一个问题

将数列{1,3,6,8,10,14}构建成一颗二叉树.n+1=7
在这里插入图片描述
问题分析:

  1. 当我们对上面的二叉树进行中序遍历时,数列为{8,3,10,1,6,14}
  2. 但是6,8,10,14这几个节点的左右指针,并没有完全的利用上.
  3. 如果我们希望充分的利用各个节点的左右指针,让各个节点可以指向自己的前后节点,怎么办?
  4. 解决方案-线索二叉树

2、线索二叉树基本介绍

  1. n个结点的二叉链表中含有n+1【公式2n-(n-1)=n+1】个空指针域。利用二叉链表中的空指针域,存放指向该结点在某种遍历次序下的前驱和后继结点的指针(这种附加的指针称为"线索")
  2. 这种加上了线索的二叉链表称为线索链表,相应的二叉树称为线索二叉树(ThreadedBinaryTree)。根据线索性质的不同,线索二叉树可分为前序线索二叉树、中序线索二叉树和后序线索二叉树三种
  3. 一个结点的前一个结点,称为前驱结点
  4. 一个结点的后一个结点,称为后继结点

3、线索二叉树应用案例

应用案例说明:将下面的二叉树,进行中序线索二叉树。中序遍历的数列为{8,3,10,1,14,6}
在这里插入图片描述
思路分析:中序遍历的结果:{8,3,10,1,14,6}
在这里插入图片描述
说明:当线索化二叉树后,Node节点的属性left和right,有如下情况:

  1. left指向的是左子树,也可能是指向的前驱节点.比如①节点left指向的左子树,而⑩节点的left指向的就是前驱节点.
  2. right指向的是右子树,也可能是指向后继节点,比如①节点right指向的是右子树,而⑩节点的right指向的是后继节点.

代码实现:

package com.xu.tree.threadedbinarytree;

public class ThreadedBinaryTreeDemo {
    public static void main(String[] args) {
        HeroNode root = new HeroNode(1, "tom");
        HeroNode node2 = new HeroNode(3, "jack");
        HeroNode node3 = new HeroNode(6, "smith");
        HeroNode node4 = new HeroNode(8, "mary");
        HeroNode node5 = new HeroNode(10, "king");
        HeroNode node6 = new HeroNode(14, "dim");

        //二叉树,后面我们要递归创建,现在简单处理使用手动创建
        root.setLeft(node2);
        root.setRight(node3);
        node2.setLeft(node4);
        node2.setRight(node5);
        node3.setLeft(node6);

        //测试中序线索化
        ThreadedBinaryTree threadedBinaryTree = new ThreadedBinaryTree();
        threadedBinaryTree.setRoot(root);
        threadedBinaryTree.threadedNodes();

        //测试:以10号节点测试
        HeroNode leftNode = node5.getLeft();
        HeroNode rightNode = node5.getRight();
        System.out.println("10号结点的前驱结点是=" + leftNode);//3
        System.out.println("10号结点的后继结点是=" + rightNode);//1

        //当线索化二叉树后,能在使用原来的遍历方法
        //threadedBinaryTree.infixOrder();
        System.out.println("使用线索化的方式遍历线索化二叉树");
        threadedBinaryTree.threadedList();//8,3,10,1,14,6
    }
}

//定义BinaryTree二叉树
class ThreadedBinaryTree {
    private HeroNode root;

    //为了实现线索化,需要创建要给指向当前结点的前驱结点的指针
    //在递归进行线索化时,pre总是保留前一个结点
    private HeroNode pre = null;

    public void setRoot(HeroNode root) {
        this.root = root;
    }

    //重载threadedNodes方法
    public void threadedNodes() {
        this.threadedNodes(root);
    }

    //遍历线索化二叉树的方法
    public void threadedList() {
        //定义一个变量,存储当前遍历的结点,从root开始
        HeroNode node = root;
        while (node != null) {
            //循环的找到leftType==1的结点,第一个找到就是8结点
            //后面随着遍历而变化,因为当leftType==1时,说明该结点是按照线索化
            //处理后的有效结点
            while (node.getLeftType() == 0) {
                node = node.getLeft();
            }

            //打印当前这个结点
            System.out.println(node);
            //如果当前结点的右指针指向的是后继结点,就一直输出
            while (node.getRightType() == 1) {
                //获取到当前结点的后继结点
                node = node.getRight();
                System.out.println(node);
            }
            //替换这个遍历的结点
            node = node.getRight();
        }
    }

    /**
     * 编写对二叉树进行中序线索化的方法
     *
     * @param node 当前需要线索化的结点
     */
    public void threadedNodes(HeroNode node) {
        //如果node==null,不能线索化
        if (node == null) {
            return;
        }

        //线索化左子树
        threadedNodes(node.getLeft());

        //线索化当前节点
        //处理当前结点的前驱结点
        //以8结点来理解
        //8结点的.left=null,8结点的.leftType=1
        if (node.getLeft() == null) {
            //让当前结点的左指针指向前驱结点
            node.setLeft(pre);
            //修改当前结点的左指针的类型,指向前驱结点
            node.setLeftType(1);
        }
        //处理后继结点
        if (pre != null && pre.getRight() == null) {
            //让前驱结点的右指针指向当前结点
            pre.setRight(node);
            //修改前驱结点的右指针类型
            pre.setRightType(1);
        }
        //!!!每处理一个结点后,让当前结点是下一个结点的前驱结点
        pre = node;

        //线索化右子树
        threadedNodes(node.getRight());
    }

    //删除节点
    public void delNode(int no) {
        if (root != null) {
            //如果只有一个root结点,这里立即判断root是不是就是要删除结点
            if (root.getNo() == no) {
                root = null;
            } else {
                //递归删除
                root.delNode(no);
            }
        } else {
            System.out.println("空树,不能删除~");
        }
    }

    //前序遍历
    public void preOrder() {
        if (this.root != null) {
            this.root.preOrder();
        } else {
            System.out.println("二叉树为空,无法遍历");
        }
    }

    //中序遍历
    public void infixOrder() {
        if (this.root != null) {
            this.root.infixOrder();
        } else {
            System.out.println("二叉树为空,无法遍历");
        }
    }

    //后序遍历
    public void postOrder() {
        if (this.root != null) {
            this.root.postOrder();
        } else {
            System.out.println("二叉树为空,无法遍历");
        }
    }

    //前序遍历查找
    public HeroNode preOrderSearch(int no) {
        if (root != null) {
            return root.preOrderSearch(no);
        } else {
            return null;
        }
    }

    //中序遍历查找
    public HeroNode infixOrderSearch(int no) {
        if (root != null) {
            return this.root.infixOrderSearch(no);
        } else {
            return null;
        }
    }

    //后序遍历查找
    public HeroNode postOrderSearch(int no) {
        if (root != null) {
            return this.root.postOrderSearch(no);
        } else {
            return null;
        }
    }

}

//先创建HeroNode结点
class HeroNode {
    private int no;
    private String name;
    private HeroNode left;
    private HeroNode right;
    //1.如果leftType==0表示指向的是左子树,如果1则表示指向前驱结点
    //2.如果rightType==0表示指向是右子树,如果1表示指向后继结点
    private int leftType;
    private int rightType;

    public HeroNode(int no, String name) {
        this.no = no;
        this.name = name;
    }

    @Override
    public String toString() {
        return "HeroNode{" +
                "no=" + no +
                ", name='" + name + '\'' +
                '}';
    }

    //递归删除结点
    //1.如果删除的节点是叶子节点,则删除该节点
    // 2.如果删除的节点是非叶子节点,则删除该子树
    public void delNode(int no) {
        /**
         * 1.因为我们的二叉树是单向的,所以我们是判断当前结点的子结点是否需要删除结点,而不能去判断当前这个结点是不是需要删除结点.
         */
        //2.如果当前结点的左子结点不为空,并且左子结点就是要删除结点,
        // 就将this.left=null;并且就返回(结束递归删除)
        if (this.left != null && this.left.no == no) {
            this.left = null;
            return;
        }
        //3.如果当前结点的右子结点不为空,并且右子结点就是要删除结点,
        // 就将this.right=null;并且就返回(结束递归删除)
        if (this.right != null && this.right.no == no) {
            this.right = null;
            return;
        }
        //4.如果第2和第3步没有删除结点,那么我们就需要向左子树进行递归删除
        if (this.left != null) {
            this.left.delNode(no);
        }
        //5.如果第4步也没有删除结点,则应当向右子树进行递归删除.
        if (this.right != null) {
            this.right.delNode(no);
        }
    }

    //编写前序遍历的方法
    public void preOrder() {
        System.out.println(this);//先输出父结点
        //递归向左子树前序遍历
        if (this.left != null) {
            this.left.preOrder();
        }
        //递归向右子树前序遍历
        if (this.right != null) {
            this.right.preOrder();
        }
    }

    //中序遍历
    public void infixOrder() {
        //递归向左子树中序遍历
        if (this.left != null) {
            this.left.infixOrder();
        }
        //输出父结点
        System.out.println(this);
        //递归向右子树中序遍历
        if (this.right != null) {
            this.right.infixOrder();
        }
    }

    //后序遍历
    public void postOrder() {
        if (this.left != null) {
            this.left.postOrder();
        }
        if (this.right != null) {
            this.right.postOrder();
        }
        System.out.println(this);
    }

    //前序遍历查找
    public HeroNode preOrderSearch(int no) {
        System.out.println("进入前序遍历");
        //比较当前结点是不是
        if (this.no == no) {
            return this;
        }
        //1.则判断当前结点的左子节点是否为空,如果不为空,则递归前序查找
        //2.如果左递归前序查找,找到结点,则返回
        HeroNode resNode = null;
        if (this.left != null) {
            resNode = this.left.preOrderSearch(no);
        }
        if (resNode != null) {//说明我们左子树找到
            return resNode;
        }

        //1.左递归前序查找,找到结点,则返回,否继续判断,
        //2.当前的结点的右子节点是否为空,如果不空,则继续向右递归前序查找
        if (this.right != null) {
            resNode = this.right.preOrderSearch(no);
        }
        return resNode;
    }

    //中序遍历查找
    public HeroNode infixOrderSearch(int no) {
        //1.则判断当前结点的左子节点是否为空,如果不为空,则递归前序查找
        //2.如果左递归前序查找,找到结点,则返回
        HeroNode resNode = null;
        if (this.left != null) {
            resNode = this.left.infixOrderSearch(no);
        }
        if (resNode != null) {//说明我们左子树找到
            return resNode;
        }

        System.out.println("进入中序遍历");
        //比较当前结点是不是
        if (this.no == no) {
            return this;
        }

        //1.左递归前序查找,找到结点,则返回,否继续判断,
        //2.当前的结点的右子节点是否为空,如果不空,则继续向右递归前序查找
        if (this.right != null) {
            resNode = this.right.infixOrderSearch(no);
        }
        return resNode;
    }

    //后序遍历查找
    public HeroNode postOrderSearch(int no) {
        //1.则判断当前结点的左子节点是否为空,如果不为空,则递归前序查找
        //2.如果左递归前序查找,找到结点,则返回
        HeroNode resNode = null;
        if (this.left != null) {
            resNode = this.left.postOrderSearch(no);
        }
        if (resNode != null) {//说明我们左子树找到
            return resNode;
        }

        //1.左递归前序查找,找到结点,则返回,否继续判断,
        //2.当前的结点的右子节点是否为空,如果不空,则继续向右递归前序查找
        if (this.right != null) {
            resNode = this.right.postOrderSearch(no);
        }
        if (resNode != null) {//说明我们右子树找到
            return resNode;
        }

        System.out.println("进入后序遍历");
        //比较当前结点是不是
        if (this.no == no) {
            return this;
        }
        return resNode;
    }

    public int getLeftType() {
        return leftType;
    }

    public void setLeftType(int leftType) {
        this.leftType = leftType;
    }

    public int getRightType() {
        return rightType;
    }

    public void setRightType(int rightType) {
        this.rightType = rightType;
    }

    public int getNo() {
        return no;
    }

    public void setNo(int no) {
        this.no = no;
    }

    public String getName() {
        return name;
    }

    public void setName(String name) {
        this.name = name;
    }

    public HeroNode getLeft() {
        return left;
    }

    public void setLeft(HeroNode left) {
        this.left = left;
    }

    public HeroNode getRight() {
        return right;
    }

    public void setRight(HeroNode right) {
        this.right = right;
    }
}

4、遍历线索化二叉树

  1. 说明:对前面的中序线索化的二叉树,进行遍历
  2. 分析:因为线索化后,各个结点指向有变化,因此原来的遍历方式不能使用,这时需要使用新的方式遍历线索化二叉树,各个节点可以通过线型方式遍历,因此无需使用递归方式,这样也提高了遍历的效率。遍历的次序应当和中序遍历保持一致。
  3. 代码:
//ThreadedBinaryTree类
//遍历线索化二叉树的方法
public void threadedList() {
    //定义一个变量,存储当前遍历的结点,从root开始
    HeroNode node = root;
    while (node != null) {
        //循环的找到leftType==1的结点,第一个找到就是8结点
        //后面随着遍历而变化,因为当leftType==1时,说明该结点是按照线索化
        //处理后的有效结点
        while (node.getLeftType() == 0) {
            node = node.getLeft();
        }

        //打印当前这个结点
        System.out.println(node);
        //如果当前结点的右指针指向的是后继结点,就一直输出
        while (node.getRightType() == 1) {
            //获取到当前结点的后继结点
            node = node.getRight();
            System.out.println(node);
        }
        //替换这个遍历的结点
        node = node.getRight();
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值