这道题可谓是非常非常简单了,修改了课件中的几行即可,一个是空树时的FindMin,另外一个是找不到则打印一行not found. 还有关于BST的一个应用实例可以在MIT的6.006的lecture 05例子中,就是一个例子只能用BST而不能用priority queue的案例,我觉得那个特别的好。
04-树7 二叉搜索树的操作集(30 分)
本题要求实现给定二叉搜索树的5种常用操作。
函数接口定义:
BinTree Insert( BinTree BST, ElementType X );
BinTree Delete( BinTree BST, ElementType X );
Position Find( BinTree BST, ElementType X );
Position FindMin( BinTree BST );
Position FindMax( BinTree BST );
其中BinTree
结构定义如下:
typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
ElementType Data;
BinTree Left;
BinTree Right;
};
- 函数
Insert
将X
插入二叉搜索树BST
并返回结果树的根结点指针; - 函数
Delete
将X
从二叉搜索树BST
中删除,并返回结果树的根结点指针;如果X
不在树中,则打印一行Not Found
并返回原树的根结点指针; - 函数
Find
在二叉搜索树BST
中找到X
,返回该结点的指针;如果找不到则返回空指针; - 函数
FindMin
返回二叉搜索树BST
中最小元结点的指针; - 函数
FindMax
返回二叉搜索树BST
中最大元结点的指针。
裁判测试程序样例:
#include <stdio.h>
#include <stdlib.h>
typedef int ElementType;
typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
ElementType Data;
BinTree Left;
BinTree Right;
};
void PreorderTraversal( BinTree BT ); /* 先序遍历,由裁判实现,细节不表 */
void InorderTraversal( BinTree BT ); /* 中序遍历,由裁判实现,细节不表 */
BinTree Insert( BinTree BST, ElementType X );
BinTree Delete( BinTree BST, ElementType X );
Position Find( BinTree BST, ElementType X );
Position FindMin( BinTree BST );
Position FindMax( BinTree BST );
int main()
{
BinTree BST, MinP, MaxP, Tmp;
ElementType X;
int N, i;
BST = NULL;
scanf("%d", &N);
for ( i=0; i<N; i++ ) {
scanf("%d", &X);
BST = Insert(BST, X);
}
printf("Preorder:"); PreorderTraversal(BST); printf("\n");
MinP = FindMin(BST);
MaxP = FindMax(BST);
scanf("%d", &N);
for( i=0; i<N; i++ ) {
scanf("%d", &X);
Tmp = Find(BST, X);
if (Tmp == NULL) printf("%d is not found\n", X);
else {
printf("%d is found\n", Tmp->Data);
if (Tmp==MinP) printf("%d is the smallest key\n", Tmp->Data);
if (Tmp==MaxP) printf("%d is the largest key\n", Tmp->Data);
}
}
scanf("%d", &N);
for( i=0; i<N; i++ ) {
scanf("%d", &X);
BST = Delete(BST, X);
}
printf("Inorder:"); InorderTraversal(BST); printf("\n");
return 0;
}
/* 你的代码将被嵌在这里 */
输入样例:
10
5 8 6 2 4 1 0 10 9 7
5
6 3 10 0 5
5
5 7 0 10 3
输出样例:
Preorder: 5 2 1 0 4 8 6 7 10 9
6 is found
3 is not found
10 is found
10 is the largest key
0 is found
0 is the smallest key
5 is found
Not Found
Inorder: 1 2 4 6 8 9
代码如下:
//
// main.c
// BST
//
// Created by air on 2018/3/28.
// Copyright © 2018年 air. All rights reserved.
//
#include <stdio.h>
#include <stdlib.h>
typedef int ElementType;
typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
ElementType Data;
BinTree Left;
BinTree Right;
};
void PreorderTraversal( BinTree BT ); /* 先序遍历,由裁判实现,细节不表 */
void InorderTraversal( BinTree BT ); /* 中序遍历,由裁判实现,细节不表 */
BinTree Insert( BinTree BST, ElementType X );
BinTree Delete( BinTree BST, ElementType X );
Position Find( BinTree BST, ElementType X );
Position FindMin( BinTree BST );
Position FindMax( BinTree BST );
int main()
{
BinTree BST, MinP, MaxP, Tmp;
ElementType X;
int N, i;
BST = NULL;
scanf("%d", &N);
for ( i=0; i<N; i++ ) {
scanf("%d", &X);
BST = Insert(BST, X);
}
printf("Preorder:"); PreorderTraversal(BST); printf("\n");
MinP = FindMin(BST);
MaxP = FindMax(BST);
scanf("%d", &N);
for( i=0; i<N; i++ ) {
scanf("%d", &X);
Tmp = Find(BST, X);
if (Tmp == NULL) printf("%d is not found\n", X);
else {
printf("%d is found\n", Tmp->Data);
if (Tmp==MinP) printf("%d is the smallest key\n", Tmp->Data);
if (Tmp==MaxP) printf("%d is the largest key\n", Tmp->Data);
}
}
scanf("%d", &N);
for( i=0; i<N; i++ ) {
scanf("%d", &X);
BST = Delete(BST, X);
}
printf("Inorder:"); InorderTraversal(BST); printf("\n");
return 0;
}
void PreorderTraversal( BinTree BT ){
if( BT ){
printf("%d ",BT->Data);
PreorderTraversal(BT->Left);
PreorderTraversal(BT->Right);
}
}
void InorderTraversal( BinTree BT ){
if( BT ){
InorderTraversal(BT->Left);
printf("%d ",BT->Data);
InorderTraversal(BT->Right);
}
}
/* 你的代码将被嵌在这里 */
/* 尾递归可以被转换成循环 */
Position Find( BinTree BST, ElementType X ){
while(BST){
if(X > BST->Data)
BST = BST->Right;
else if(X < BST->Data)
BST = BST->Left;
else
return BST;
}
return NULL;
}
Position FindMin( BinTree BST ){ /*应该可以用非递归的方法来做的吧?*/
if (!BST) return NULL; /* 对应最后一个测试点,如果为空 */
else if (BST->Left == NULL)
return BST;
else if(!BST->Left)
return BST;
else
return FindMin(BST->Left);
}
Position FindMax( BinTree BST ){
if(BST){
while(BST->Right)
BST = BST->Right;
}
return BST;
}
BinTree Insert( BinTree BST, ElementType X ){
if( !BST ){
BST = (Position)malloc(sizeof(struct TNode));
BST->Data = X;
BST->Left = NULL;
BST->Right = NULL;
}
else if(X > BST->Data){
BST->Right = Insert(BST->Right, X); /* 不要用return- - 然而我一开始用了 */
}
else if(X < BST->Data){
BST->Left = Insert(BST->Left, X);
}
return BST;
}
/*左子树找个最大 或者 右子树找个最小,左子树的最大值和柚子树的最小值,一定都是叶节点*/
BinTree Delete( BinTree BST, ElementType X ){
Position tmp;
if(!BST){ /* 如果X不在树中,则打印一行Not Found */
printf("Not Found\n");
return NULL;
}
else if(X < BST->Data)
BST->Left = Delete(BST->Left, X);
else if(X > BST->Data)
BST->Right = Delete(BST->Right, X);
else {
if(BST->Left && BST->Right){
tmp = FindMin(BST->Right);
BST->Data = tmp->Data;
BST->Right = Delete(BST->Right, BST->Data);
}else{
tmp = BST;
if(!BST->Left) /*左边空*/
BST = BST->Right;
else if(!BST->Right) /*右边空*/
BST = BST->Left;
free(tmp);
}
}
return BST;
}