Tr A
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 3270 Accepted Submission(s): 2449
Problem Description
A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%9973。
Input
数据的第一行是一个T,表示有T组数据。
每组数据的第一行有n(2 <= n <= 10)和k(2 <= k < 10^9)两个数据。接下来有n行,每行有n个数据,每个数据的范围是[0,9],表示方阵A的内容。
每组数据的第一行有n(2 <= n <= 10)和k(2 <= k < 10^9)两个数据。接下来有n行,每行有n个数据,每个数据的范围是[0,9],表示方阵A的内容。
Output
对应每组数据,输出Tr(A^k)%9973。
Sample Input
2 2 2 1 0 0 1 3 99999999 1 2 3 4 5 6 7 8 9
Sample Output
2 2686
Author
xhd
Source
题目分析:
裸裸的矩阵快速幂
裸裸的矩阵快速幂
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#define MAX 13
#define MOD 9973
using namespace std;
int t,n,k;
struct Matrix
{
int a[13][13];
Matrix ( )
{
memset ( a , 0 , sizeof ( a ) );
}
};
Matrix multi ( Matrix m1 , Matrix m2 )
{
Matrix ret;
for ( int i = 1 ; i <= n ; i++ )
for ( int j = 1 ; j <= n ; j++ )
if ( m1.a[i][j] )
for ( int k = 1 ; k <= n ; k++ )
ret.a[i][k] = ( ret.a[i][k] + (m1.a[i][j] * m2.a[j][k] )%MOD )%MOD;
return ret;
}
Matrix quick_multi ( Matrix m , int k )
{
Matrix ret;
for ( int i = 1 ; i <= n ; i++ )
ret.a[i][i] = 1;
while ( k )
{
if ( k&1 ) ret = multi ( ret , m );
m = multi ( m , m );
k >>= 1;
}
return ret;
}
void print ( Matrix m )
{
for ( int i = 1 ; i <= n ; i++ )
{
for ( int j = 1 ; j <= n ; j++ )
printf ( "%d " , m.a[i][j] );
puts ("");
}
}
int main ( )
{
scanf ( "%d" , &t );
while ( t-- )
{
scanf ( "%d%d" , &n , &k );
Matrix temp;
for ( int i = 1 ; i <= n ; i++ )
for ( int j = 1 ; j <= n ; j++ )
scanf ( "%d" , &temp.a[i][j] );
temp = quick_multi ( temp , k );
//print ( temp );
int ans = 0;
for ( int i = 1 ; i <= n ; i++ )
ans = ( ans + temp.a[i][i] ) %MOD;
printf ( "%d\n" , ans );
}
}