视频前背景分离论文之(2) GOSUS: Grassmannian Online Subspace Updates with Structured-sparsity

本文介绍了一种在线估计方法,该方法将问题视为格拉斯曼流形上的近似优化问题,并利用结构化稀疏性来建模子空间的均匀扰动及异常值的连续分布。该方法首先定义了输入数据由主要效应和异常值组成;然后,通过正则化项对异常值进行建模,并在优化过程中考虑了正交约束。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、Abstract:

(1) view online estimation procedure as an approximate optimization on a Grassmannian(格拉斯曼流形);
(2) leverage structured-sparsity to model both homogeneous perturbations of the subspace and structured contiguities of outliers.

2、Introduction

2.1 Model

V=B+X

where VRn×m is input data, B is main effect of V, X is outlier.

2.2 Grassmannian

B=UW,URn×d

B is a linear combination of d sources (subspace basis) in n dimensions, denoted by U=[ud].

The orthogonal structure of U implies that it lies on a Grassmannian manifold Gn,d embedded in a n-dimensional Euclidean space.

2.3 Structured-sparsity

Motivation: For the background estimation example, the texture (or color) of the foreground(outliers) is homogeneous

and the outliers should be contiguous in an image.

Group sparsity:

Dijj={1,0,if pixel j is in group i;others.

Penalty function:

h(x)=i=1lμiDix

where diagonal matrix Di denotes a “group” i, each element corresponds to the presence/absence of the pixel.
Di is sparse and allows overlap to form groups from overlapping homogeneous regions.
inner norm is l2 or l, outer norm is l1 to encourage sparsity.

3、GOSUS

3.1 Model:

minUTU=Id,w,xi=1lμiDix2+λ2Uw+xv22

where vRn denotes the input, xRn is outlier, URn×d.

3.2 Optimization

Objectives: the non-smoothness of the mixed norm and non-convexity of the orthogonal structure of U.

(1)Update w,x at fixed U.

引入松弛变量{zi}:

minw,xi=1lμizi2+λ2Uw+xv22s.t.zi=Dix,i=1,,l.

关于{zi}w,x凸,仿射形约束,通过ADMM算法求解.

(2)Update U with estimated w,x.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值