视频前背景分离论文之(2) GOSUS: Grassmannian Online Subspace Updates with Structured-sparsity

本文介绍了一种在线估计方法,该方法将问题视为格拉斯曼流形上的近似优化问题,并利用结构化稀疏性来建模子空间的均匀扰动及异常值的连续分布。该方法首先定义了输入数据由主要效应和异常值组成;然后,通过正则化项对异常值进行建模,并在优化过程中考虑了正交约束。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、Abstract:

(1) view online estimation procedure as an approximate optimization on a Grassmannian(格拉斯曼流形);
(2) leverage structured-sparsity to model both homogeneous perturbations of the subspace and structured contiguities of outliers.

2、Introduction

2.1 Model

V=B+X

where VRn×m is input data, B is main effect of V, X is outlier.

2.2 Grassmannian

B=UW,URn×d

B is a linear combination of d sources (subspace basis) in n dimensions, denoted by U=[ud].

The orthogonal structure of U implies that it lies on a Grassmannian manifold Gn,d embedded in a n-dimensional Euclidean space.

2.3 Structured-sparsity

Motivation: For the background estimation example, the texture (or color) of the foreground(outliers) is homogeneous

and the outliers should be contiguous in an image.

Group sparsity:

Dijj={1,0,if pixel j is in group i;others.

Penalty function:

h(x)=i=1lμiDix

where diagonal matrix Di denotes a “group” i , each element corresponds to the presence/absence of the pixel.
Di is sparse and allows overlap to form groups from overlapping homogeneous regions.
inner norm is l2 or l , outer norm is l1 to encourage sparsity.

3、GOSUS

3.1 Model:

minUTU=Id,w,xi=1lμiDix2+λ2Uw+xv22

where vRn denotes the input, xRn is outlier, URn×d .

3.2 Optimization

Objectives: the non-smoothness of the mixed norm and non-convexity of the orthogonal structure of U .

(1)Update w,x at fixed U .

引入松弛变量 {zi} :

minw,xi=1lμizi2+λ2Uw+xv22s.t.zi=Dix,i=1,,l.

关于 {zi} w,x 凸,仿射形约束,通过ADMM算法求解.

(2)Update U with estimated w,x.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值