回归分析方法介绍

回归分析方法详解
回归分析在统计学中占据重要地位,包括线性回归、logistic回归、cox回归、poisson回归等多种类型。线性回归适用于连续变量,logistic回归处理分类变量,而cox回归用于生存资料分析。此外,poisson回归、probit回归、负二项回归、weibull回归、主成分回归、岭回归和偏最小二乘回归各有特点,适用于不同的数据和场景。

回归分析是统计学中内容最丰富、应用最广泛的分支;包括最简单的t检验、方差分析也都可以归到线性回归的类别,而卡方检验也完全可以用logistic回归代替。众多回归的名称张口即来的就有一大片,线性回归、logistic回归、cox回归、poission回归、probit回归等等。为了让大家对众多回归有一个清醒的认识,这里简单地做一下总结:

1, 线性回归,这是我们学习统计学时最早接触的回归,就算其它的你都不明白,最起码你一定要知道,线性回归的因变量是连续变量,自变量可以是连续变量,也可以是分类变量。如果只有一个自变量,且只有两类,那这个回归就等同于t检验。如果只有一个自变量,且有三类或更多类,那这个回归就等同于方差分析。如果有2个自变量,一个是连续变量,一个是分类变量,那这个回归就等同于协方差分析。所以线性回归一定要认准一点,因变量一定要是连续变量。当然还有其它条件,比如独立性、线性、等方差性、正态性,这些说起来就话长了,读者有兴趣的话可以阅读参考文献。

2, logistic回归,与线性回归并成为两大回归,应用范围一点不亚于线性回归,甚至有青出于蓝之势。因为logistic回归太好用了,而且太有实际意义了。解释起来直接就可以说,如果具有某个危险因素,发病风险增加2.3倍,听起来多么地让人通俗易懂。线性回归相比之下其实际意义就弱了。logistic回归与线性回归恰好相反,因变量一定要是分类变量,不可能是连续变量。分类变量既可以是二分类,也可以是多分类,多分类中既可以是有序,也可以是无序。二分类logistic回归有时候根据研究目的又分为条件logistic回归和非条件logistic回归。条件logistic回归用于配对资料的分析,非条件logistic回归用于非配对资料的分析,也就是直接随机抽样的资料。无序多分类logistic回归有时候也成为多项logit模型,有序logistic回归有时也称为累积比数logit模型。这些也在参考文献有所介绍,大家可以参考一下。

3, cox回归,cox回归的因变量
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值