from mxnet import autograd, nd
#生成数据
num_inputs = 2
num_examples = 1000
true_w = [2, -3.4]
true_b = 4.2
features = nd.random.normal(scale=1, shape=(num_examples, num_inputs))
labels = true_w[0] * features[:, 0] + true_w[1] * features[:, 1] + true_b
labels += nd.random.normal(scale=0.01, shape=labels.shape)
#读取数据
#为避免data模块和其他命名出现重复,采用假名gdata
from mxnet.gluon import data as gdata
batch_size=10
dataset=gdata.ArrayDataset(features,labels)
data_iter=gdata.DataLoader(dataset,batch_size,shuffle=True)
#定义模型
from mxnet.gluon import nn
net=nn.Sequential()
net.add(nn.Dense(1))
#初始化模型参数
from mxnet import init
net.initialize()
#定义损失函数
from mxnet.gluon import loss as gloss
loss=gloss.L2Loss()
#定义优化算法
from mxnet import gluon
trainer=gluon.Trainer(net.collect_params(),'sgd',{'learning_rate':0.3})
#开始训练模型
epoch_nums=50
for epoch in range(0,epoch_nums):
for X,y in data_iter:
with autograd.record():
l=loss(net(X),y)
l.backward()
trainer.step(batch_size)
train_l=loss(net(features),labels)
print('epoch %d, loss %f' %(epoch,train_l.mean().asnumpy()))
linear_regression_gluon
最新推荐文章于 2025-06-08 00:35:39 发布