/*
* 时间复杂度 O(n^3)
* 输入 a 原矩阵
* c 逆矩阵
* n 矩阵的阶数
*
* 函数说明:将原矩阵a和一个单位矩阵E作成一个大矩阵(a,E),
* 用初等变换将大矩阵中的a变成E,则会得到(E,a-1)的形式
*/
vector<double> operator * (vector<double> a, double b){
int n = a.size();
vector<double>res (n, 0);
for (int i = 0; i < n; i++){
res[i] = a[i]*b;
}
return res;
}
vector<double> operator - (vector<double>a, vector<double> b){
int n = a.size();
vector<double> res(n, 0);
for (int i = 0; i < n; i++){
res[i] = a[i]-b[i];
}
return res;
}
void inverse(vector<double> a[], vector<double> c[], int n){
for (int i = 0; i < n; i++){
c[i] = vector<double>(n, 0);
}
for (int i = 0; i < n; i++){
c[i][i] = 1;
}
for (int i = 0; i < n; i++){
for (int j = i; j < n; j++){
if (fabs(a[j][i]) > eps){
swap(a[i], a[j]);
swap(c[i], c[j]);
break;
}
}
c[i] = c[i] * (1.0/a[i][i]);
a[i] = a[i] * (1.0/a[i][i]);
for (int j = 0; j < n; j++){
if (i != j && fabs(a[j][i]) > eps){
c[j] = c[j] - c[i] * a[j][i];
a[j] = a[j] - a[i] * a[j][i];
}
}
}
}
计算逆矩阵
最新推荐文章于 2025-01-21 22:35:34 发布