二、集合之LinkedList

本文详细解析了LinkedList的数据结构,包括其内部存储单元、添加、查看及删除元素的方法,并对比了LinkedList与ArrayList在不同操作上的性能差异。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

LinkedList既然是一种双向链表,必然有一个存储单元,看一下LinkedList的基本存储单元,它是LinkedList中的一个内部类:

private static class Node<E> {
        E item;
        Node<E> next;
        Node<E> prev;

        Node(Node<E> prev, E element, Node<E> next) {
            this.item = element;
            this.next = next;
            this.prev = prev;
        }
    }

这里写图片描述

public class LinkedList<E>
    extends AbstractSequentialList<E>
    implements List<E>, Deque<E>, Cloneable, java.io.Serializable

添加元素

public boolean add(E e) {
        linkLast(e);
        return true;
    }

public void add(int index, E element) {
        checkPositionIndex(index);

        if (index == size)
            linkLast(element);
        else
            linkBefore(element, node(index));
    }
/**
     * Links e as last element.
     */
    void linkLast(E e) {
        final Node<E> l = last;
        final Node<E> newNode = new Node<>(l, e, null);
        last = newNode;
        if (l == null)
            first = newNode;
        else
            l.next = newNode;
        size++;
        modCount++;
    }
/**
     * Inserts element e before non-null Node succ.
     */
    void linkBefore(E e, Node<E> succ) {
        // assert succ != null;
        final Node<E> pred = succ.prev;
        final Node<E> newNode = new Node<>(pred, e, succ);
        succ.prev = newNode;
        if (pred == null)
            first = newNode;
        else
            pred.next = newNode;
        size++;
        modCount++;
    }

查看元素

public E get(int index) {
        checkElementIndex(index);
        return node(index).item;
    }
/**
     * Returns the (non-null) Node at the specified element index.
     */
    Node<E> node(int index) {
        // assert isElementIndex(index);

        if (index < (size >> 1)) {
            Node<E> x = first;
            for (int i = 0; i < index; i++)
                x = x.next;
            return x;
        } else {
            Node<E> x = last;
            for (int i = size - 1; i > index; i--)
                x = x.prev;
            return x;
        }
    }

这段代码就体现出了双向链表的好处了。双向链表增加了一点点的空间消耗(每个Entry里面还要维护它的前置Entry的引用),同时也增加了一定的编程复杂度,却大大提升了效率。

由于LinkedList是双向链表,所以LinkedList既可以向前查找,也可以向后查找,第6行~第12行的作用就是:当index小于数组大小的一半的时候(size >> 1表示size / 2,使用移位运算提升代码运行效率),向后查找;否则,向前查找。

这样,在我的数据结构里面有10000个元素,刚巧查找的又是第10000个元素的时候,就不需要从头遍历10000次了,向后遍历即可,一次就能找到我要的元素。


删除元素

看完了添加元素,我们看一下如何删除一个元素。和ArrayList一样,LinkedList支持按元素删除和按下标删除,前者会删除从头开始匹配的第一个元素。

public E remove(int index) {
        checkElementIndex(index);
        return unlink(node(index));
    }
/**
     * Unlinks non-null node x.
     */
    E unlink(Node<E> x) {
        // assert x != null;
        final E element = x.item;
        final Node<E> next = x.next;
        final Node<E> prev = x.prev;

        if (prev == null) { //x是头结点
            first = next;
        } else {
            prev.next = next;
            x.prev = null; //gc
        }

        if (next == null) { //x是尾结点
            last = prev;
        } else {
            next.prev = prev;
            x.next = null; //gc
        }

        x.item = null; //gc
        size--;
        modCount++;
        return element;
    }
public boolean remove(Object o) {
        if (o == null) {
            for (Node<E> x = first; x != null; x = x.next) {
                if (x.item == null) {
                    unlink(x);
                    return true;
                }
            }
        } else {
            for (Node<E> x = first; x != null; x = x.next) {
                if (o.equals(x.item)) {
                    unlink(x);
                    return true;
                }
            }
        }
        return false;
    }

按照Java虚拟机HotSpot采用的垃圾回收检测算法—-根节点搜索算法来说,即使previous、element、next不设置为null也是可以回收这个Entry的,因为此时这个Entry已经没有任何地方会指向它了,tail的previous与header的next都已经变掉了,所以这块Entry会被当做”垃圾”对待。之所以还要将previous、element、next设置为null,我认为可能是为了兼容另外一种垃圾回收检测算法—-引用计数法,这种垃圾回收检测算法,只要对象之间存在相互引用,那么这块内存就不会被当作”垃圾”对待。


LinkedList和ArrayList的对比

1、顺序插入速度ArrayList会比较快,因为ArrayList是基于数组实现的,数组是事先new好的,只要往指定位置塞一个数据就好了;LinkedList则不同,每次顺序插入的时候LinkedList将new一个对象出来,如果对象比较大,那么new的时间势必会长一点,再加上一些引用赋值的操作,所以顺序插入LinkedList必然慢于ArrayList。

2、基于上一点,因为LinkedList里面不仅维护了待插入的元素,还维护了Entry的前置Entry和后继Entry,如果一个LinkedList中的Entry非常多,那么LinkedList将比ArrayList更耗费一些内存。

3、数据遍历的速度,看最后一部分,这里就不细讲了,结论是:使用各自遍历效率最高的方式,ArrayList的遍历效率会比LinkedList的遍历效率高一些。

4、有些说法认为LinkedList做插入和删除更快,这种说法其实是不准确的:

(1)LinkedList做插入、删除的时候,慢在寻址,快在只需要改变前后Entry的引用地址;

(2)ArrayList做插入、删除的时候,慢在数组元素的批量copy,快在寻址。

所以,如果待插入、删除的元素是在数据结构的前半段尤其是非常靠前的位置的时候,LinkedList的效率将大大快过ArrayList,因为ArrayList将批量copy大量的元素;越往后,对于LinkedList来说,因为它是双向链表,所以在第2个元素后面插入一个数据和在倒数第2个元素后面插入一个元素在效率上基本没有差别,但是ArrayList由于要批量copy的元素越来越少,操作速度必然追上乃至超过LinkedList。

从这个分析看出,如果你十分确定你插入、删除的元素是在前半段,那么就使用LinkedList;如果你十分确定你删除、删除的元素在比较靠后的位置,那么可以考虑使用ArrayList。如果你不能确定你要做的插入、删除是在哪儿呢?那还是建议你使用LinkedList吧,因为一来LinkedList整体插入、删除的执行效率比较稳定,没有ArrayList这种越往后越快的情况;二来插入元素的时候,弄得不好ArrayList就要进行一次扩容,记住,ArrayList底层数组扩容是一个既消耗时间又消耗空间的操作。

ArrayList使用最普通的for循环遍历,LinkedList使用foreach循环比较快。

基于Spring Boot搭建的一个多功能在线学习系统的实现细节。系统分为管理员和用户两个主要模块。管理员负责视频、文件和文章资料的管理以及系统运营维护;用户则可以进行视频播放、资料下载、参与学习论坛并享受个性化学习服务。文中重点探讨了文件下载的安全性和性能优化(如使用Resource对象避免内存溢出),积分排行榜的高效实现(采用Redis Sorted Set结构),敏感词过滤机制(利用DFA算法构建内存过滤树)以及视频播放的浏览器兼容性解决方案(通过FFmpeg调整MOOV原子位置)。此外,还提到了权限管理方面自定义动态加载器的应用,提高了系统的灵活性和易用性。 适合人群:对Spring Boot有一定了解,希望深入理解其实际应用的技术人员,尤其是从事在线教育平台开发的相关从业者。 使用场景及目标:适用于需要快速搭建稳定高效的在线学习平台的企业或团队。目标在于提供一套完整的解决方案,涵盖从资源管理到用户体验优化等多个方面,帮助开发者更好地理解和掌握Spring Boot框架的实际运用技巧。 其他说明:文中不仅提供了具体的代码示例和技术思路,还分享了许多实践经验教训,对于提高项目质量有着重要的指导意义。同时强调了安全性、性能优化等方面的重要性,确保系统能够应对大规模用户的并发访问需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值