Spark 是一个在大数据开发中非常常用的组件。可以用于 Kafka 的生产者,也可以用于Spark 的消费者。
提前准备Scala环境。
Spark环境准备:
(1)创建一个 maven 项目 spark-kafka;
(2)在项目 spark-kafka 上点击右键,Add Framework Support => 勾选 scala;
(3)在 main 下创建 scala 文件夹,并右键 Mark Directory as Sources Root =>在 scala 下创建包名为 com.study.spark
(4)添加配置文件:
<dependencies>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-kafka-0-10_2.12</artifactId>
<version>3.0.0</version>
</dependency>
</dependencies>
(5)将 log4j.properties 文件添加到 resources 里面,就能更改打印日志的级别为 error
log4j.rootLogger=error, stdout,R
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d{yyyy-MM-dd HH:mm:ss,SSS} %5p --- [%50t] %-80c(line:%5L) : %m%n
log4j.appender.R=org.apache.log4j.RollingFileAppender
log4j.appender.R.File=../log/agent.log
log4j.appender.R.MaxFileSize=1024KB
log4j.appender.R.MaxBackupIndex=1
log4j.appender.R.layout=org.apache.log4j.PatternLayout
log4j.appender.R.layout.ConversionPattern=%d{yyyy-MM-dd HH:mm:ss,SSS} %5p --- [%50t] %-80c(line:%6L) : %m%n
1 Spark 生产者
在 com.study.spark 包下创建 scala Object:SparkKafkaProducer:
package com.study.spark
import java.util.Properties
import org.apache.kafka.clients.producer.{KafkaProducer,ProducerRecord}
object SparkKafkaProducer {
def main(args: Array[String]): Unit = {
// 0 kafka 配置信息
val properties = new Properties()
properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,
"hadoop102:9092,hadoop103:9092,hadoop104:9092")
properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,
classOf[StringSerializer])
properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,
classOf[StringSerializer])
// 1 创建 kafka 生产者
var producer = new KafkaProducer[String, String](properties)
// 2 发送数据
for (i <- 1 to 5){
producer.send(new ProducerRecord[String,String]("first","lyx" + i))
}
// 3 关闭资源
producer.close()
}
}
启动 Kafka 消费者:
bin/kafka-console-consumer.sh --bootstrap-server hadoop102:9092 --topic first
执行 SparkKafkaProducer 程序。
2 Spark 消费者
添加配置文件pom.xml:
<dependencies>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-kafka-0-10_2.12</artifactId>
<version>3.0.0</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.12</artifactId>
<version>3.0.0</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_2.12</artifactId>
<version>3.0.0</version>
</dependency>
</dependencies>
在 com.study.spark 包下创建 scala Object:SparkKafkaConsumer
package com.study.spark
import org.apache.kafka.clients.consumer.{ConsumerConfig, ConsumerRecord}
import org.apache.kafka.common.serialization.StringDeserializer
import org.apache.spark.SparkConf
import org.apache.spark.streaming.dstream.{DStream, InputDStream}
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.streaming.kafka010.{ConsumerStrategies, KafkaUtils, LocationStrategies}
object SparkKafkaConsumer {
def main(args: Array[String]): Unit = {
//1.创建 SparkConf
val sparkConf: SparkConf = new
SparkConf().setAppName("sparkstreaming").setMaster("local[*]")
//2.创建 StreamingContext
val ssc = new StreamingContext(sparkConf, Seconds(3))
//3.定义 Kafka 参数:kafka 集群地址、消费者组名称、key 序列化、value 序列化
val kafkaPara: Map[String, Object] = Map[String, Object](
ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG ->
"hadoop102:9092,hadoop103:9092,hadoop104:9092",
ConsumerConfig.GROUP_ID_CONFIG -> "atguiguGroup",
ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG ->
classOf[StringDeserializer],
ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG ->
classOf[StringDeserializer]
)
//4.读取 Kafka 数据创建 DStream
val kafkaDStream: InputDStream[ConsumerRecord[String, String]] =
KafkaUtils.createDirectStream[String, String](
ssc,
LocationStrategies.PreferConsistent, //优先位置
ConsumerStrategies.Subscribe[String, String](Set("first"), kafkaPara)// 消费策略:(订阅
多个主题,配置参数)
)
//5.将每条消息的 KV 取出
val valueDStream: DStream[String] = kafkaDStream.map(record => record.value())
//6.计算 WordCount
valueDStream.print()
//7.开启任务
ssc.start()
ssc.awaitTermination()
}
}
启动 SparkKafkaConsumer 消费者,启动 kafka 生产者:
bin/kafka-console-producer.sh --bootstrap-server hadoop102:9092 --topic first