Kafka_集成Spark

Spark 是一个在大数据开发中非常常用的组件。可以用于 Kafka 的生产者,也可以用于Spark 的消费者。

一、环境准备

1)Scala 环境准备
2)Spark 环境准备
(1)创建一个 maven 项目 spark-kafka
(2)在项目 spark-kafka 上点击右键,Add Framework Support=》勾选 scala
(3)在 main 下创建 scala 文件夹,并右键 Mark Directory as Sources Root=>在 scala 下创
建包名为 com.atguigu.spark
(4)添加配置文件
 

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
  xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
  <modelVersion>4.0.0</modelVersion>

  <groupId>com.hadoop</groupId>
  <artifactId>spark-kafka</artifactId>
  <version>1.0-SNAPSHOT</version>
  <packaging>jar</packaging>

  <name>spark-kafka</name>
  <url>http://maven.apache.org</url>

  <properties>
    <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
  </properties>

  <dependencies>
    <dependency>
      <groupId>junit</groupId>
      <artifactId>junit</artifactId>
      <version>3.8.1</version>
      <scope>test</scope>
    </dependency>
      <dependency>
        <groupId>org.apache.spark</groupId>
        <artifactId>spark-streaming-kafka-0-10_2.12</artifactId>
        <version>3.0.0</version>
      </dependency>
  </dependencies>
</project>

(5)将 log4j.properties 文件添加到 resources 里面,就能更改打印日志的级别为 error

log4j.rootLogger=error, stdout,R
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d{yyyy-MM-dd HH:mm:ss,SSS} %5p --- [%50t] %-80c(line:%5L) : %m%n
log4j.appender.R=org.apache.log4j.RollingFileAppender
log4j.appender.R.File=../log/agent.log
log4j.appender.R.MaxFileSize=1024KB
log4j.appender.R.MaxBackupIndex=1
log4j.appender.R.layout=org.apache.log4j.PatternLayout
log4j.appender.R.layout.ConversionPattern=%d{yyyy-MM-dd HH:mm:ss,SSS} %5p --- [%50t] %-80c(line:%6L) : %m%n

二、Spark 生产者 


(1)在 com.atguigu.spark 包下创建 scala Object:SparkKafkaProducer
 

package com.hadoop.spark

import org.apache.kafka.clients.producer.{KafkaProducer, ProducerConfig, ProducerRecord}
import org.apache.kafka.common.serialization.StringSerializer

import java.util.Properties

/**
 * @author codestart
 * @create 2023-07-11 10:10
 */
object SparkKafkaProducer {
    def main(args: Array[String]): Unit = {
        // 0 kafka 配置信息
        val properties = new Properties();
        properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "hadoop102:9092,hadoop103:9092");
        properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, classOf[StringSerializer]);
        properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, classOf[StringSerializer]);

        // 1 创建 kafka 生产者
        val producer = new KafkaProducer[String, String](properties);

        // 2 发送数据
        for (i <- 1 to 5) {
            producer.send(new ProducerRecord[String, String]("first", "hadoophhjkasdf" + i));
        }
        // 3 关闭资源
        producer.close();

    }


}

(2)启动 Kafka 消费者 
bin/kafka-console-consumer.sh --bootstrap-server hadoop102:9092 --topic first 
(3)执行 SparkKafkaProducer 程序,观察 kafka 消费者控制台情况
 

三、Spark 消费者

(1)添加配置文件

        <dependency>
            <groupId>junit</groupId>
            <artifactId>junit</artifactId>
            <version>3.8.1</version>
            <scope>test</scope>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-streaming-kafka-0-10_2.12</artifactId>
            <version>3.0.0</version>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-core_2.12</artifactId>
            <version>3.0.0</version>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-streaming_2.12</artifactId>
            <version>3.0.0</version>
        </dependency>


(2)在 com.atguigu.spark 包下创建 scala Object:SparkKafkaConsumer

package com.hadoop.spark

import org.apache.kafka.clients.consumer.{ConsumerConfig, ConsumerRecord}
import org.apache.kafka.common.serialization.StringDeserializer
import org.apache.spark.SparkConf
import org.apache.spark.streaming.dstream.{DStream, InputDStream}
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.streaming.kafka010.{ConsumerStrategies, KafkaUtils, LocationStrategies}

/**
 * @author codestart
 * @create 2023-07-11 10:51
 */
object SparkKafkaConsumer {
    def main(args: Array[String]): Unit = {
        //1、初始化上下文环境
        val conf = new SparkConf().setMaster("local[*]").setAppName("spark-kafka")
        val ssc = new StreamingContext(conf, Seconds(3))

        //2、消费数据

        //定义 Kafka 参数:kafka 集群地址、消费者组名称、key 序列化、value 序列化
        val kafkaPara = Map[String, Object](
            ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG -> "hadoop102:9092,hadoop103:9092,hadoop104:9092",
            ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG -> classOf[StringDeserializer],
            ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG -> classOf[StringDeserializer],
            ConsumerConfig.GROUP_ID_CONFIG -> "hadoop"
        )
        //读取 Kafka 数据创建 DStream
        val KafkaDStream = KafkaUtils.createDirectStream[String,String](ssc,
            LocationStrategies.PreferConsistent, //优先位置
            ConsumerStrategies.Subscribe[String, String](Set("first"), kafkaPara) // 消费策略:(订阅多个主题配置参数)
        )
        //将每条消息的 KV 取出
        val value = KafkaDStream.map(record => record.value())
        value.print()

        //7.开启任务
        ssc.start()
        ssc.awaitTermination()
    }

}


(3)启动 SparkKafkaConsumer 消费者
(4)启动 kafka 生产者
bin/kafka-console-producer.sh --bootstrap-server hadoop102:9092 --topic first
(5)观察 IDEA 控制台数据打印

报错:Timeout of 60000ms expired before the position for partition first-5 could be determined(已解决,主要的是换一个每个分区有leader的topic)

 

原因:与kafka的分区连接不上,就是分区缺少leader,无法进行通信,故出现这个原因。

所以需要重新订阅topic,使SteamingContext能与topic的每一个分区进行通信,这样才不会报错连接不上。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值