import pandas as pd
cust_sale=pd.read_excel('C:/Users/XI/fzql.xls')
cust_sale=pd.merge(temp1,temp2,on='CUST_ID',how='inner')
cust_sale=cust_sale.dropna()
cust_sale.head()
import sklearn.preprocessing as preprocessing#方法一
min_max_scaler = preprocessing.MinMaxScaler()
cust_sale.loc[:,['特征一','特征二','特征三','特征四','特征五']]=min_max_scaler.fit_transform(cust_sale[['特征一','特征二','特征三','特征四','特征五']].values)#数据归一化,按比例映射到(01)区间
cust_sale.head()
from sklearn import preprocessing#方法二
cust_sale=cust_sale.dropna()
cust_sale[['特征一','特征二','特征三','特征四','特征五']] = preprocessing.scale(cust_sale[['特征一','特征二','特征三','特征四','特征五']])#指定均值方差按列标准化!(默认mean=0,std=1)
print('mean:', cust_sale[["特征一","特征二"]].mean(axis
tSNE—高维数据降维可视化(实践部分)-Kmeans聚类
最新推荐文章于 2025-04-18 10:01:19 发布