Spark-SQL adaptive 自适应框架

一、自适应框架能解决什么问题
1、目前SparkSQL中reduce阶段的task个数取决于固定参数spark.sql.shuffle.partition(默认值200),一个作业一旦设置了该参数,它运行过程中的所有阶段的reduce个数都是同一个值。
而对于不同的作业,以及同一个作业内的不同reduce阶段,实际的数据量大小可能相差很大,比如reduce阶段要处理的数据可能是10MB,也有可能是100GB, 如果使用同一个值对实际运行效率会产生很大影响,比如10MB的数据一个task就可以解决,如果spark.sql.shuffle.partition使用默认值200的话,那么10MB的数据就要被分成200个task处理,增加了调度开销,影响运行效率。
SparkSQL自适应框架可以通过设置shuffle partition的上下限区间,在这个区间内对不同作业不同阶段的reduce个数进行动态调整。
通过区间的设置,一方面可以大大减少调优的成本(不需要找到一个固定值),另一方面同一个作业内部不同reduce阶段的reduce个数也能动态调整
参数如下:

spark.sql.adaptive.enabled     默认false  自适应执行框架的开关
spark.sql.adaptive.minNumPostShufflePartit
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值