思路
- 给你一个无向图,每个边流量给你了,让你把最小割的边输出,基本算是个裸题
- 最大流就是最小割这个大家都知道
- 从源点出发,在残量网络中能到达的点属于和源点一个集合,可以dfs或者bfs
- 把一个点属于源点集合,另一个点不属于源点集合的点边输出即可
- 这里我用的是sap
代码
# include <iostream>
# include <stdio.h>
# include <string.h>
# include <algorithm>
# include <math.h>
# include <queue>
# include <string>
# include <vector>
# include <set>
# include <map>
# define INF 0x3f3f3f3f
# define Inf 0x7f7f7f7f
# define _sz(x) (x).size()
# define qisok(q) (!(q).empty())
# define clr0(x) memset(x,0,sizeof(x))
# define clr1(x) memset(x,INF,sizeof(x))
# define clrf(x) memset(x,-1,sizeof(x))
# define rep(i,a) for(int i = 0;i<(a);i++)
# define repf(i,a,b) for(int i = (a);i<=(b);i++)
# define repu(i,a,b) for(int i = (a);i<(b);i++)
# define repd(i,a,b) for(int i = (a);i>=(b);i--)
# define lowbit(x) ((x)&(-x))
# define ww(a) while(a)
# define sc(x) scanf("%d",&(x))
# define sl(x) scanf("%I64d",&(x))
# define pc(x) printf("%d\n",(x));
# define pl(x) printf("%I64d\n",(x));
# define scf scanf
# define prf printf
# define wT() int T;scanf("%d",&T);while(T--)
# define wt() int T;scanf("%d",&T);for(int tt = 1;tt<=T;tt++)
# define lson(x) (x)<<1
# define rson(x) (x)<<1|1
# define ll long long
# define fuckio ios::sync_with_stdio(false);
# define fuck cout<<"fuck:"<<__LINE__<<endl;
# define maxn 100000
# define maxm 202000
using namespace std;
int N,M;
int a,b,c;
struct Edge
{
int from;
int to,next;
int cap,flow;
}edge[maxm];
int tol;
int head[maxn];
int gap[maxn],dep[maxn],cur[maxn];
int Q[maxn];
int S[maxn];
bool vis[maxn];
void init()
{
tol = 0;
clrf(head);
}
void add_edge(int u,int v,int w,int rw = 0)
{
edge[tol].from = u;
edge[tol].to = v;edge[tol].cap = w;edge[tol].flow = 0;
edge[tol].next = head[u];head[u] = tol++;
edge[tol].from = v;
edge[tol].to = u;edge[tol].cap = rw;edge[tol].flow = 0;
edge[tol].next = head[v];head[v] = tol++;
}
void BFS(int start,int end)
{
clrf(dep);
clr0(gap);
gap[0] = 1;
int front = 0,rear = 0;
dep[end] = 0;
Q[rear++] = end;
ww(front!=rear){
int u = Q[front++];
for(int i= head[u];i!=-1;i = edge[i].next){
int v = edge[i].to;
if(dep[v] != -1)continue;
Q[rear++] = v;
dep[v] = dep[u]+1;
gap[dep[v]]++;
}
}
}
int sap(int start,int end,int N)
{
BFS(start,end);
memcpy(cur,head,sizeof(head));
int top = 0;
int u = start;
int ans = 0;
ww(dep[start]<N){
if(u == end){
int Min = INF;
int inser;
rep(i,top){
if(Min>edge[S[i]].cap-edge[S[i]].flow){
Min = edge[S[i]].cap-edge[S[i]].flow;
inser = i;
}
}
rep(i,top){
edge[S[i]].flow += Min;
edge[S[i]^1].flow -= Min;
}
ans += Min;
top = inser;
u = edge[S[top]^1].to;
continue;
}
bool flag = false;
int v;
for(int i = cur[u];i!=-1;i = edge[i].next){
v = edge[i].to;
if(edge[i].cap-edge[i].flow&&dep[v]+1 == dep[u]){
flag = true;
cur[u] = i;
break;
}
}
if(flag){
S[top++] = cur[u];
u = v;
continue;
}
int Min = N;
for(int i = head[u];i!=-1;i = edge[i].next){
if(edge[i].cap - edge[i].flow&&dep[edge[i].to]<Min){
Min = dep[edge[i].to];
cur[u] = i;
}
}
gap[dep[u]] -- ;
if(!gap[dep[u]])return ans;
dep[u] = Min + 1;
gap[dep[u]]++;
if(u!=start)u = edge[S[--top]^1].to;
}
return ans;
}
void dfs(int now)
{
vis[now] = true;
for(int i = head[now];i!=-1;i = edge[i].next){
int t = edge[i].to;
if(edge[i].cap&&edge[i].flow<edge[i].cap&&!vis[t]){
dfs(t);
}
}
}
int main()
{
ww(~scf("%d%d",&N,&M)&&(M+N)){
init();
clr0(vis);
rep(i,M){
scanf("%d%d%d",&a,&b,&c);
add_edge(a,b,c,c);
}
int mxflow = sap(1,2,N);
dfs(1);
repf(i,1,N){
if(vis[i]){
for(int j = head[i];~j;j = edge[j].next){
if(!vis[edge[j].to]){
printf("%d %d\n",i,edge[j].to);
}
}
}
}
printf("\n");
}
}