UVA 10480 - Sabotage (最小割 /最大流)

The regime of a small but wealthy dictatorship has been abruptly overthrown by an unexpected rebel-
lion. Because of the enormous disturbances this is causing in world economy, an imperialist military
super power has decided to invade the country and reinstall the old regime.
For this operation to be successful, communication between the capital and the largest city must
be completely cut. This is a difficult task, since all cities in the country are connected by a computer
network using the Internet Protocol, which allows messages to take any path through the network.
Because of this, the network must be completely split in two parts, with the capital in one part and
the largest city in the other, and with no connections between the parts.
There are large differences in the costs of sabotaging different connections, since some are much
more easy to get to than others.
Write a program that, given a network speci cation and the costs of sabotaging each connection,
determines which connections to cut in order to separate the capital and the largest city to the lowest
possible cost.
Input
Input le contains several sets of input. The description of each set is given below.
The rst line of each set has two integers, separated by a space: First one the number of cities,
n
in
the network, which is at most 50. The second one is the total number of connections,
m
, at most 500.
The following
m
lines specify the connections. Each line has three parts separated by spaces: The

rst two are the cities tied together by that connection (numbers in the range 1

把1和2隔开,隔断每条边都有一个花费,求最小花费的情况下,应该切断那些边
思路就是求最大流。然后残留网络下,和源点连通的分在源点一点,和汇点连通的分在汇点
找到了最简最大流模板
#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <string.h>
#include <queue>
using namespace std;

const int MAXN=100;
const int INF=0x3f3f3f3f;
int g[MAXN][MAXN];//原图的流量
int flow[MAXN][MAXN];//最后求得最大流的流量
int path[MAXN];
int a[MAXN];
int start,endt;
int n;//顶点数,编号1~n

int maxflow()
{
    queue<int>q;
    memset(flow,0,sizeof(flow));
    int max_flow=0;
    while(1)
    {
        memset(a,0,sizeof(a));
        a[start]=INF;
        while(!q.empty())q.pop();
        q.push(start);
        while(!q.empty())
        {
            int u=q.front();
            q.pop();
            if(u==endt)break;  
            for(int v=1;v<=n;v++)
            if(!a[v]&&flow[u][v]<g[u][v])
              {
                  path[v]=u;
                  a[v]=min(a[u],g[u][v]-flow[u][v]);
                  q.push(v);
              }
        }
        if(a[endt]==0)break;
        for(int u=endt;u!=start;u=path[u])
        {
            flow[path[u]][u]+=a[endt];
            flow[u][path[u]]-=a[endt];
        }
        max_flow+=a[endt];
    }
    return max_flow;
}
const int MAXM=550;
int x[MAXM],y[MAXM];
int m;
int main()
{
    while(scanf("%d%d",&n,&m)==2)
    {
        if(n==0&&m==0)break;
        memset(g,0,sizeof(g));
        for(int i=0;i<m;i++)
        {
            scanf("%d%d",&x[i],&y[i]);
            scanf("%d",&g[x[i]][y[i]]);
            g[y[i]][x[i]]=g[x[i]][y[i]];
        }
        start=1,endt=2;
        maxflow();
        for(int i=0;i<m;i++)
        {
            if((!a[x[i]]&&a[y[i]]) || (a[x[i]]&&!a[y[i]]) )
                 printf("%d %d\n", x[i], y[i]);
        }
        printf("\n");
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值