numpy.average
-
numpy.
average
(
a,
axis=None,
weights=None,
returned=False
)
[source]
-
Compute the weighted average along the specified axis.
Parameters:
a : array_like
axis : int, optional
weights : array_like, optional
returned : bool, optional
| |
Returns: | average, [sum_of_weights] : array_type or double
|
Raises: | ZeroDivisionError
TypeError
|
Examples
>>> data = range(1,5)
>>> data
[1, 2, 3, 4]
>>> np.average(data)
2.5
>>> np.average(range(1,11), weights=range(10,0,-1))
4.0
>>> data = np.arange(6).reshape((3,2))
>>> data
array([[0, 1],
[2, 3],
[4, 5]])
>>> np.average(data, axis=1, weights=[1./4, 3./4])
array([ 0.75, 2.75, 4.75])
>>> np.average(data, weights=[1./4, 3./4])
Traceback (most recent call last):
...
TypeError: Axis must be specified when shapes of a and weights differ.
From:https://docs.scipy.org/doc/numpy/reference/generated/numpy.average.html