《向量数据库指南》前瞻:Florence——视觉AI的全能冠军

Florence 的能力:“多才多艺”的视觉AI

Florence 的适应性在执行以下任务的能力中显而易见。

零样本图像分类

Florence 在12个数据集中展现了强大的零样本分类能力,在大多数情况下优于CLIP和FLIP等模型。它在细粒度任务上表现尤为出色,如在Standford Cars上获得93.2%的分数,在Oxford Pets上获得95.9%的分数,并以83.7%的准确率处理ImageNet等大规模数据集。这一表现表明,Florence 可以利用其对语言和视觉特征的理解,泛化识别未见类别。

线性探测分类

当在冻结特征之上使用线性分类器时,Florence 在大多数数据集上超过了 SimCLRv2、ViT 和 EfficientNet 等模型。这种在多样化和细粒度分类任务上的多功能性表明,Florence 学到的表示非常丰富且适用于新任务。

目标检测

Florence 的目标检测性能在多个数据集上进行了评估,在COCO上得分为62.4 mAP,在Object365上得分为39.3 mAP,在Visua

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大禹智库

大禹智库——河南第一民间智库

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值