#include <iostream>
#include<queue>
#include<stack>
using namespace std;
#define E 100 //图的边数
#define N 100//图的顶点数
typedef char vextype; //顶点的数据类型
typedef float adjtype; //边的权值数据类型
//图的结构体定义
typedef struct
{
vextype vexs[N]; //顶点信息
adjtype adjs[N][N]; //领接矩阵
} graph;
//需要定义为全局变量
graph *g = new graph;
int visit[N]; //辅助数组,标记点是否已经被访问
int n,m;
void Creat_graph(graph *g);
void DFSA(int i);
void DFSA(int i);
bool topoSort();
int main(int argc, char** argv)
{
Creat_graph(g);
cout<<"图g的顶点为:";
for (int i = 0; i < 4; ++i)
{
cout<<g->vexs[i]<<" ";
}
cout<<endl;
//图的遍历算法,传入图和指定的起始遍历顶点序号
DFSA(0);
cout<<"拓扑排序: "<<endl;
topoSort();
delete g;
system("pause");
return 0;
}
bool topoSort()
{
int indo[N];
memset(indo,0,sizeof(indo));
stack<int> st;
for(int i=0; i<n; i++)
{
for(int j=0; j<n; j++)
if(g->adjs[i][j])
indo[j]++;
}
for(int i=0; i<n; i++)
{
if(indo[i]==0)
{
st.push(i);
}
}
int icount=0;
while(!st.empty())
{
int vv=st.top();
st.pop();
icount++;
cout<<g->vexs[vv]<<" "<<endl;
for(int i=0; i<n; i++)
{
if(g->adjs[vv][i])
{
indo[i]--;
if(indo[i]==0) st.push(i);
}
}
}
if(icount<n) return false;
return true;
}
//初始化无向图
void Creat_graph(graph *g)
{
//输入顶点信息
char temp_char;
cin>>n;
for (int i = 0; i < n; ++i)
{
g->vexs[i] = 'A'+i;
}
//初始化邻接矩阵
for (int i = 0; i < n; ++i)
{
for (int j = 0; j < n; ++j)
{
g->adjs[i][j] = 0;
}
}
//写入邻接矩阵
int vex1,vex2;//边的顶点
float w;//权值
cin>>m;
for (int k = 0; k < m; ++k)
{
scanf("%d%d%f",&vex1,&vex2,&w);//格式化输入,很方便
g->adjs[vex1][vex2] = w;
//g->adjs[vex2][vex1] = w;
//若建立有向图,则将最后一赋值语句去掉即可,可以将w的值设为1,变成无向图
}
}
void DFSA(int i)
{
visit[i] = 1;
cout<<g->vexs[i]<<" ";
for (int j = 0; j < N; ++j)//依次遍历i顶点的邻接点
{
if ((g->adjs[i][j]!=0) && (visit[j]==0))//与i相连且未被访问过
{
DFSA(j);
}
}
}
void BFSA(int k)
{
queue<int> Q;
int i,j;
cout<<"访问出发顶点序号: "<<k<<endl;
visit[k] = 1;
while (!Q.empty())
{
i = Q.front();
Q.pop();
for (j = 0; j < n; ++j)
{
if ((g->adjs[i][j]!=0) && (visit[j]==0))//与i相连且未被访问过
{
visit[j] = 1;
Q.push(j);
}
}
}
}