[Tensorflow][2017-07-25] Demo 运行报错

Traceback (most recent call last):
  File "t2.py", line 12, in <module>
    mnist = input_data.read_data_sets("./data", one_hot=True)
  File "/Users/dylan/test/tensorflow/demo/20170705/input_data.py", line 147, in read_data_sets
    train_images = extract_images(local_file)
  File "/Users/dylan/test/tensorflow/demo/20170705/input_data.py", line 50, in extract_images
    buf = bytestream.read(rows * cols * num_images)
  File "/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/gzip.py", line 276, in read
    chunk = self.extrabuf[offset: offset + size]
TypeError: only integer scalar arrays can be converted to a scalar index

新版本才有的问题, 老版本, 没有,


解决方法:

修改文件    input_data.py


 35 def _read32(bytestream):
 36   dt = numpy.dtype(numpy.uint32).newbyteorder('>')
 37   return numpy.frombuffer(bytestream.read(4), dtype=dt)[0]

第37行, 最后添加【0】即可, 源代码, 无


下附input_data.py全文

# Copyright 2015 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Functions for downloading and reading MNIST data."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import gzip
import os
import numpy
from six.moves import urllib
from six.moves import xrange  # pylint: disable=redefined-builtin
SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/'
def maybe_download(filename, work_directory):
  """Download the data from Yann's website, unless it's already here."""
  if not os.path.exists(work_directory):
    os.mkdir(work_directory)
  filepath = os.path.join(work_directory, filename)
  if not os.path.exists(filepath):
    filepath, _ = urllib.request.urlretrieve(SOURCE_URL + filename, filepath)
    statinfo = os.stat(filepath)
    print('Successfully downloaded', filename, statinfo.st_size, 'bytes.')
  return filepath
def _read32(bytestream):
  dt = numpy.dtype(numpy.uint32).newbyteorder('>')
  return numpy.frombuffer(bytestream.read(4), dtype=dt)[0]
def extract_images(filename):
  """Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
  print('Extracting', filename)
  with gzip.open(filename) as bytestream:
    magic = _read32(bytestream)
    if magic != 2051:
      raise ValueError(
          'Invalid magic number %d in MNIST image file: %s' %
          (magic, filename))
    num_images = _read32(bytestream)
    rows = _read32(bytestream)
    cols = _read32(bytestream)
    buf = bytestream.read(rows * cols * num_images)
    data = numpy.frombuffer(buf, dtype=numpy.uint8)
    data = data.reshape(num_images, rows, cols, 1)
    return data
def dense_to_one_hot(labels_dense, num_classes=10):
  """Convert class labels from scalars to one-hot vectors."""
  num_labels = labels_dense.shape[0]
  index_offset = numpy.arange(num_labels) * num_classes
  labels_one_hot = numpy.zeros((num_labels, num_classes))
  labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
  return labels_one_hot
def extract_labels(filename, one_hot=False):
  """Extract the labels into a 1D uint8 numpy array [index]."""
  print('Extracting', filename)
  with gzip.open(filename) as bytestream:
    magic = _read32(bytestream)
    if magic != 2049:
      raise ValueError(
          'Invalid magic number %d in MNIST label file: %s' %
          (magic, filename))
    num_items = _read32(bytestream)
    buf = bytestream.read(num_items)
    labels = numpy.frombuffer(buf, dtype=numpy.uint8)
    if one_hot:
      return dense_to_one_hot(labels)
    return labels
class DataSet(object):
  def __init__(self, images, labels, fake_data=False):
    if fake_data:
      self._num_examples = 10000
    else:
      assert images.shape[0] == labels.shape[0], (
          "images.shape: %s labels.shape: %s" % (images.shape,
                                                 labels.shape))
      self._num_examples = images.shape[0]
      # Convert shape from [num examples, rows, columns, depth]
      # to [num examples, rows*columns] (assuming depth == 1)
      assert images.shape[3] == 1
      images = images.reshape(images.shape[0],
                              images.shape[1] * images.shape[2])
      # Convert from [0, 255] -> [0.0, 1.0].
      images = images.astype(numpy.float32)
      images = numpy.multiply(images, 1.0 / 255.0)
    self._images = images
    self._labels = labels
    self._epochs_completed = 0
    self._index_in_epoch = 0
  @property
  def images(self):
    return self._images
  @property
  def labels(self):
    return self._labels
  @property
  def num_examples(self):
    return self._num_examples
  @property
  def epochs_completed(self):
    return self._epochs_completed
  def next_batch(self, batch_size, fake_data=False):
    """Return the next `batch_size` examples from this data set."""
    if fake_data:
      fake_image = [1.0 for _ in xrange(784)]
      fake_label = 0
      return [fake_image for _ in xrange(batch_size)], [
          fake_label for _ in xrange(batch_size)]
    start = self._index_in_epoch
    self._index_in_epoch += batch_size
    if self._index_in_epoch > self._num_examples:
      # Finished epoch
      self._epochs_completed += 1
      # Shuffle the data
      perm = numpy.arange(self._num_examples)
      numpy.random.shuffle(perm)
      self._images = self._images[perm]
      self._labels = self._labels[perm]
      # Start next epoch
      start = 0
      self._index_in_epoch = batch_size
      assert batch_size <= self._num_examples
    end = self._index_in_epoch
    return self._images[start:end], self._labels[start:end]
def read_data_sets(train_dir, fake_data=False, one_hot=False):
  class DataSets(object):
    pass
  data_sets = DataSets()
  if fake_data:
    data_sets.train = DataSet([], [], fake_data=True)
    data_sets.validation = DataSet([], [], fake_data=True)
    data_sets.test = DataSet([], [], fake_data=True)
    return data_sets
  TRAIN_IMAGES = 'train-images-idx3-ubyte.gz'
  TRAIN_LABELS = 'train-labels-idx1-ubyte.gz'
  TEST_IMAGES = 't10k-images-idx3-ubyte.gz'
  TEST_LABELS = 't10k-labels-idx1-ubyte.gz'
  VALIDATION_SIZE = 5000
  local_file = maybe_download(TRAIN_IMAGES, train_dir)
  train_images = extract_images(local_file)
  local_file = maybe_download(TRAIN_LABELS, train_dir)
  train_labels = extract_labels(local_file, one_hot=one_hot)
  local_file = maybe_download(TEST_IMAGES, train_dir)
  test_images = extract_images(local_file)
  local_file = maybe_download(TEST_LABELS, train_dir)
  test_labels = extract_labels(local_file, one_hot=one_hot)
  validation_images = train_images[:VALIDATION_SIZE]
  validation_labels = train_labels[:VALIDATION_SIZE]
  train_images = train_images[VALIDATION_SIZE:]
  train_labels = train_labels[VALIDATION_SIZE:]
  data_sets.train = DataSet(train_images, train_labels)
  data_sets.validation = DataSet(validation_images, validation_labels)
  data_sets.test = DataSet(test_images, test_labels)
  return data_sets


<think>好的,我需要帮助用户解决在运行deepseek-yolov4项目时遇到的OSError,具体是找不到SavedModel文件的问题。首先,我得理解这个错误的常见原因。根据经验,这种错误通常是因为模型文件路径不正确或者模型文件缺失。用户运行的是object_tracker.py,所以首先应该检查脚本中加载模型的部分。 接下来,我需要回忆用户提供的引用内容。引用[1]提到了替换storage_client.py文件,这可能与文件路径有关,但不确定是否直接相关。引用[3]提到下载文件时的超时错误,可能涉及文件下载不完整,这也可能导致模型文件缺失。引用[4]则是关于Ubuntu交换内存的问题,可能影响多线程处理,不过当前错误是OSError,可能更直接与文件路径或存在性有关。 用户的问题是关于SavedModel文件不存在的,SavedModel是TensorFlow的模型格式。所以,首先需要确认用户是否正确下载了预训练模型,并放置在正确的目录下。可能用户在运行项目前没有执行下载模型的步骤,或者下载的模型文件损坏,或者路径配置错误。 解决方案的第一步应该是检查模型文件是否存在。用户需要确认模型文件的路径是否与代码中的路径一致。例如,代码中可能硬编码了一个路径,而实际文件存放在另一个位置。这时候需要调整路径或移动模型文件。 第二步是重新下载模型文件。如果文件确实缺失,用户需要按照项目文档的指示重新下载,并确保下载过程中网络稳定,避免文件损坏或未完全下载。引用[3]提到的下载错误可能导致文件不完整,所以需要确保下载成功。 第三步是检查项目配置文件,如config.ini或类似的设置文件,确认模型路径是否正确配置。用户可能修改了配置,导致路径指向错误的位置。 第四步是查看项目文档或GitHub的issues,看看是否有其他用户遇到相同问题,以及官方的解决方案。有时候项目可能需要特定的目录结构,或者有额外的依赖步骤,比如运行一个脚本来自动下载模型。 另外,引用[1]提到的替换文件可能涉及路径问题,如果项目中有使用到文件存储相关的模块,可能需要检查相关代码是否影响了模型文件的加载路径。不过这个可能性较低,但用户也可以检查storage_client.py是否被错误地修改,导致路径解析错误。 最后,如果以上步骤都无效,建议用户联系项目维护者或在社区提问,提供详细的错误日志,以便进一步诊断问题。同时,确保环境依赖正确安装,比如TensorFlow版本是否兼容,是否有必要的库缺失等。 总结下来,用户需要逐步检查文件路径、模型文件的存在性、配置文件设置,并参考项目文档,这些步骤应该能解决大部分类似的问题。</think>### 解决运行deepseek-yolov4时OSError: SavedModel文件不存在的方案 #### 1. 确认模型文件路径 - **问题定位**:首先检查代码中加载模型的路径是否与实际文件路径一致。在`object_tracker.py`中,查找类似以下代码段: ```python model = tf.saved_model.load("path/to/saved_model") ``` 确保`"path/to/saved_model"`指向正确的目录,且目录中包含`saved_model.pb`和`variables`子目录[^1]。 #### 2. 下载缺失的预训练模型 - **手动下载**:若项目依赖预训练模型(如`yolov4.weights`或TensorFlow SavedModel格式文件),需从官方仓库或指定链接下载。例如: ```bash wget https://example.com/deepseek-yolov4/saved_model.tar.gz tar -xzvf saved_model.tar.gz -C ./checkpoints ``` 若下载过程中出现超时错误(如引用[3]),可尝试使用代理或更换下载源。 #### 3. 检查配置文件 - **路径配置**:若项目使用配置文件(如`config.ini`或`config.yaml`),需核对模型路径参数。例如: ```ini [model] saved_model_dir = ./checkpoints/saved_model ``` 确保路径与实际存储位置一致,避免相对路径错误[^1]。 #### 4. 验证模型完整性 - **文件完整性**:检查模型文件是否完整,典型的SavedModel目录应包含: ``` saved_model/ ├── saved_model.pb └── variables/ ├── variables.data-00000-of-00001 └── variables.index ``` 若文件缺失或损坏,需重新下载。 #### 5. 参考项目文档与社区 - **查阅文档**:查看项目README或Wiki,确认是否有特殊步骤(如运行`download_models.sh`脚本)。 - **GitHub Issues**:搜索项目GitHub仓库的Issues,类似问题可能有现成解决方案。例如,用户可能需调整文件权限或修复路径解析逻辑[^3]。 #### 6. 环境依赖检查 - **TensorFlow版本**:确认安装的TensorFlow版本与项目要求匹配。例如: ```bash pip install tensorflow==2.6.0 # 根据项目要求指定版本 ``` 版本不兼容可能导致加载SavedModel失败。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值