Find the contiguous subarray within an array (containing at least one number) which has the largest sum.
For example, given the array [-2,1,-3,4,-1,2,1,-5,4],
the contiguous subarray [4,-1,2,1] has the largest sum = 6.
题解
求子数组中最大和
动态规划
对每一位,要么加入已有的子数组,要么从该位重新开始记录子数组
状态转移方程:maxSubArray(A, i) = max(maxSubArray(A, i - 1) + A[i], A[i]) ,maxSubArray(A,i)即以i为末尾的子数组最大和
时间复杂度O(n),空间复杂度O(n)class Solution { public: int maxSubArray(vector<int>& nums) { int n = nums.size(); //dp[i] means the maximum subarray ending with nums[i] int dp[n], maxx; dp[0] = maxx = nums[0]; for(int i = 1; i < n; i++){ dp[i] = max(nums[i] + dp[i-1], nums[i]); maxx = max(maxx, dp[i]); } return maxx; } };
分析状态转移方程,当maxSubArray(A,i)小于0时,就从A[i]重新开始
空间复杂度O(1)class Solution { public: int maxSubArray(vector<int>& nums) { int n = nums.size(); int sum, maxx; sum = maxx = nums[0]; for(int i = 1; i < n; i++){ sum = nums[i] + (sum < 0 ? 0 : sum); maxx = max(maxx, sum); } return maxx; } };
分治
将数组A分为两个数组A1,A2,则A中子数组最大和就是A1中子数组最大和、A2中子数组最大和、横贯A1、A2的子数组最大和(即以A1最后元素结束的子数组最大和+以A2首元素开始的子数组最大和)中的最大值
l: 从第一个元素开始的子数组最大和
m: 子数组最大和
r: 以最后一个元素结束的子数组最大和
s: 数组所有元素的和时间复杂度O(logn),空间复杂度O(n)
struct val { int l, m, r, s; val(int l, int m, int r, int s):l(l), m(m), r(r), s(s){} }; class Solution { public: int maxSubArray(vector<int>& nums) { val t = findMax(nums, 0, nums.size() - 1); return t.m; } private: val findMax(vector<int>& nums, int left, int right){ if(left == right) return val(nums[left], nums[left], nums[left], nums[left]); int mid = left + ((right - left) >> 1); val v1 = findMax(nums, left, mid), v2 = findMax(nums, mid + 1, right); int l, m, r, s; l = max(v1.l, v1.s + v2.l); r = max(v2.r, v1.r + v2.s); s = v1.s + v2.s; m = max(max(v1.m, v2.m), v1.r + v2.l); return val(l, m, r, s); } };