人大赵鑫教授团队大模型新书丨大语言模型(附PDF书)

人大团队大模型新书及学习资源分享

项目背景

本课程围绕中国人民大学高瓴人工智能学院赵鑫教授团队出品的《大语言模型》书籍展开,覆盖大语言模型训练与使用的全流程,从预训练到微调与对齐,从使用技术到评测应用,帮助学员全面掌握大语言模型的核心技术。

并且,课程内容基于大量的代码实战与讲解,通过实际项目与案例,学员能将理论知识应用于真实场景,提升解决实际问题的能力。

作者:赵鑫李军毅周昆唐天一文继荣

项目受众

本课程面向希望深入掌握大模型技术的 AI 从业者,帮助其训练、优化和应用大模型以解决实际问题。同时,课程适合对人工智能前沿技术感兴趣的学生与研究人员,为其学术研究或职业发展奠定基础。此外,产品经理、技术管理者与创业者也可通过本课程了解大模型的潜力与应用,推动产品创新并优化技术战略。

学员需要具备一定的Python编程能力,熟悉PyTorch等经典深度学习框架,并具有一定的深度学习基础。

电子版PDF书籍获取

配套视频

配套PPT课件资源

为了帮助课程教学及传播大模型知识,《大语言模型》编写团队特别提供了相应的PDF课件:

内容贡献

本书各章节的主要负责人和参与人名单如下:

  • 第三章的负责人是闵映乾和杨晨,参与人有李军毅、周昆;
  • 第四章的负责人是张君杰、侯宇蓬和周昆;
  • 第五章的负责人是董梓灿,参与人有田震和唐天一;
  • 第六章的负责人是唐天一和陈昱硕;
  • 第七章的负责人是唐天一,参与人有成晓雪;
  • 第八章的负责人是李军毅和陈志朋;
  • 第九章的负责人是陈昱硕、刘沛羽和唐天一,参与人有周昆;
  • 第十章的负责人是李军毅、汤昕宇和都一凡,参与人有王晓磊;
  • 第十一章的负责人是任瑞阳和蒋锦昊,参与人有李军毅;
  • 第十二章的负责人是张北辰和周昆,参与人有张高玮;
  • 第十三章的负责人是周昆,参与人(按拼音字母排序)有蒋锦昊、李依凡、刘子康、孙文奇、王禹淏、徐澜玲、杨锦霞和郑博文。

同时感谢其他参与本书编写、校对的同学,他们(按拼音字母排序)是:曹乾、曹展硕、陈杰、程伽雅琪、戴孙浩、邓欣、丁毅杰、冯雪扬、高泽峰、苟志斌、辜子惠、郭歌扬、何东楠、侯新铭、胡译文、李炳黔、李成远、李欣潼、刘恩泽、刘炯楠、刘子涵、罗文扬、梅朗、欧柯杉、彭涵、阮恺、苏炜航、孙一丁、汤奕如、王家鹏、王磊、王淑婷、姚峰、尹彦彬、詹玉梁、张景森、张良、朱天宇和朱余韬。

本书在编写过程得到了中国人民大学大型科学仪器共享平台的算力资源支持,在此对于陈跃国、鲁蔚征、石源三位老师表示衷心的感谢。

反馈与引用

欢迎反馈

本书的初版仅是一个起点,作者团队计划在网上持续进行内容的更新和完善,并特别欢迎读者提出宝贵的批评与建议,也会同步在网站上对于提出宝贵建议的读者进行致谢。 如果您有任何意见、评论以及建议(先确认最新版本中是否已经修正),请通过GitHub的Issues页面进行反馈,或通过邮件发送至作者邮箱batmanfly at qq.comlijunyi at ruc.edu.cnfrancis_kun_zhou at ruc.edu.cnsteventianyitang at outlook.com

我们该怎样系统的去转行学习大模型 ?

很多想入行大模型的人苦于现在网上的大模型老课程老教材,学也不是不学也不是,基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近100余次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来: 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

一、大模型经典书籍(免费分享)

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

二、640套大模型报告(免费分享)

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、大模型系列视频教程(免费分享)

在这里插入图片描述

四、2025最新大模型学习路线(免费分享)

我们把学习路线分成L1到L4四个阶段,一步步带你从入门到进阶,从理论到实战。

L1阶段:启航篇丨极速破界AI新时代

L1阶段:我们会去了解大模型的基础知识,以及大模型在各个行业的应用和分析;学习理解大模型的核心原理、关键技术以及大模型应用场景。

L2阶段:攻坚篇丨RAG开发实战工坊

L2阶段是我们的AI大模型RAG应用开发工程,我们会去学习RAG检索增强生成:包括Naive RAG、Advanced-RAG以及RAG性能评估,还有GraphRAG在内的多个RAG热门项目的分析。

L3阶段:跃迁篇丨Agent智能体架构设计

L3阶段:大模型Agent应用架构进阶实现,我们会去学习LangChain、 LIamaIndex框架,也会学习到AutoGPT、 MetaGPT等多Agent系统,打造我们自己的Agent智能体。

L4阶段:精进篇丨模型微调与私有化部署

L4阶段:大模型的微调和私有化部署,我们会更加深入的探讨Transformer架构,学习大模型的微调技术,利用DeepSpeed、Lamam Factory等工具快速进行模型微调。

L5阶段:专题集丨特训篇 【录播课】

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方二维码,免费领取

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值